首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The desire for improved methods of biomass conversion into fuels and feedstocks has re-awakened interest in the enzymology of plant cell wall degradation. The complex polysaccharide xyloglucan is abundant in plant matter, where it may account for up to 20% of the total primary cell wall carbohydrates. Despite this, few studies have focused on xyloglucan saccharification, which requires a consortium of enzymes including endo-xyloglucanases, α-xylosidases, β-galactosidases and α-L-fucosidases, among others. In the present paper, we show the characterization of Xyl31A, a key α-xylosidase in xyloglucan utilization by the model Gram-negative soil saprophyte Cellvibrio japonicus. CjXyl31A exhibits high regiospecificity for the hydrolysis of XGOs (xylogluco-oligosaccharides), with a particular preference for longer substrates. Crystallographic structures of both the apo enzyme and the trapped covalent 5-fluoro-β-xylosyl-enzyme intermediate, together with docking studies with the XXXG heptasaccharide, revealed, for the first time in GH31 (glycoside hydrolase family 31), the importance of a PA14 domain insert in the recognition of longer oligosaccharides by extension of the active-site pocket. The observation that CjXyl31A was localized to the outer membrane provided support for a biological model of xyloglucan utilization by C. japonicus, in which XGOs generated by the action of a secreted endo-xyloglucanase are ultimately degraded in close proximity to the cell surface. Moreover, the present study diversifies the toolbox of glycosidases for the specific modification and saccharification of cell wall polymers for biotechnological applications.  相似文献   

2.
The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. β-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 is recognized as a source of highly active β-xylosidases, some of which could have practical applications. The biochemical details of four GH43 β-xylosidases (those from Alkaliphilus metalliredigens QYMF, Bacillus pumilus, Bacillus subtilis subsp. subtilis str. 168, and Lactobacillus brevis ATCC 367) are examined here. Sedimentation equilibrium experiments indicate that the quaternary states of three of the enzymes are mixtures of monomers and homodimers (B. pumilus) or mixtures of homodimers and homotetramers (B. subtilis and L. brevis). k cat and k cat/K m values of the four enzymes are higher for xylobiose than for xylotriose, suggesting that the enzyme active sites comprise two subsites, as has been demonstrated by the X-ray structures of other GH43 β-xylosidases. The K i values for d-glucose (83.3–357 mM) and d-xylose (15.6–70.0 mM) of the four enzymes are moderately high. The four enzymes display good temperature (K t 0.5?~?45 °C) and pH stabilities (>4.6 to <10.3). At pH 6.0 and 25 °C, the enzyme from L. brevis ATCC 367 displays the highest reported k cat and k cat/K m on natural substrates xylobiose (407 s?1, 138 s?1?mM?1), xylotriose (235 s?1, 80.8 s?1?mM?1), and xylotetraose (146 s?1, 32.6 s?1?mM?1).  相似文献   

3.
Yoshida S  Park DS  Bae B  Mackie R  Cann IK  Nair SK 《Biochemistry》2011,50(16):3369-3375
We present characterization of PbFucA, a family 5 glycoside hydrolase (GH5) from Prevotella bryantii B(1)4. While GH5 members typically are xylanases, PbFucA shows no activity toward xylan polysaccharides. A screen against a panel of p-nitrophenol coupled sugars identifies PbFucA as a β-D-fucosidase. We also present the 2.2 ? resolution structure of PbFucA and use structure-based mutational analysis to confirm the role of catalytically essential residues. A comparison of the active sites of PbFucA with those of family 5 and 51 glycosidases reveals that while the essential catalytic framework is identical between these enzymes, the steric contours of the respective active site clefts are distinct and likely account for substrate discrimination. Our results show that members of this cluster of orthologous group (COG) 5520 have β-D-fucosidase activities, despite showing an overall sequence and structural similarity to GH-5 xylanases.  相似文献   

4.
We obtained Cx1 from a commercial supplier, whose catalog listed it as a β-xylosidase of glycoside hydrolase family 43. NMR experiments indicate retention of anomeric configuration in its reaction stereochemistry, opposing the assignment of GH43, which follows an inverting mechanism. Partial protein sequencing indicates Cx1 is similar to but not identical to β-xylosidases of GH52, including Q09LZ0, that have retaining mechanisms. Q09LZ0 β-xylosidase had been characterized biochemically in kinetic reactions that contained Tris. We overproduced Q09LZ0 and demonstrated that Tris is a competitive inhibitor of the β-xylosidase. Also, the previous work used grossly incorrect extinction coefficients for product 4-nitrophenol. We redetermined kinetic parameters using reactions that omitted Tris and using correct extinction coefficients for 4-nitrophenol. Cx1 and Q09LZ0 β-xylosidases were thus shown to possess similar kinetic properties when acting on 4-nitrophenyl-β-d-xylopyranoside and xylobiose. kcat pH profiles of Cx1 and Q09LZ0 acting on 4-nitrophenyl-β-d-xylopyranoside and xylobiose have patterns containing two rate increases with increasing acidity, not reported before for glycoside hydrolases. The dexylosylation step of 4-nitrophenyl-β-d-xylopyranoside hydrolysis mediated by Q09LZ0 is not rate determining for kcat4NPX.  相似文献   

5.
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.  相似文献   

6.
Zhou  Junpei  Song  Zhifeng  Zhang  Rui  Chen  Caihong  Wu  Qian  Li  Junjun  Tang  Xianghua  Xu  Bo  Ding  Junmei  Han  Nanyu  Huang  Zunxi 《Extremophiles : life under extreme conditions》2017,21(4):699-709

β-N-Acetylglucosaminidases (GlcNAcases) are important for many biological functions and industrial applications. In this study, a glycoside hydrolase family 20 GlcNAcase from Shinella sp. JB10 was expressed in Escherichia coli BL21 (DE3). Compared to many GlcNAcases, the purified recombinant enzyme (rJB10Nag) exhibited a higher specificity activity (538.8 µmol min−1 mg−1) or V max (1030.0 ± 82.1 µmol min−1 mg−1) toward p-nitrophenyl β-N-acetylglucosaminide and N,N′-diacetylchitobiose (specificity activity of 35.4 µmol min−1 mg−1) and a higher N-acetylglucosaminide tolerance (approximately 50% activity in 70.0 mM N-acetylglucosaminide). The degree of synergy on enzymatic degradation of chitin by a commercial chitinase and rJB10Nag was as high as 2.35. The enzyme was tolerant to most salts, especially 3.0–15.0% (w/v) NaCl and KCl. These biochemical characteristics make the JB10 GlcNAcase a candidate for use in many potential applications, including processing marine materials and the bioconversion of chitin waste. Furthermore, the enzyme has the highest proportions of alanine (16.5%), glycine (10.5%), and random coils (48.8%) with the lowest proportion of α-helices (24.9%) among experimentally characterized GH 20 GlcNAcases from other organisms.

  相似文献   

7.
This study characterized a glycoside hydrolase family 42 (GH42) β-galactosidase of Lactobacillus acidophilus (LacA) and compared lactose hydrolysis, hydrolysis of oNPG, pNPG and pNPG-analogues and galactooligosaccharides (GOSs) formation to GH2 β-galactosidases of Streptococcus thermophilus (LacZ type), Lactobacillus plantarum and Leuconostoc mesenteroides subsp. cremoris (both LacLM type). Beta-galactosidases were heterologously expressed in Lactococcus lactis using a p170 derived promoter; experiments were performed with L. lactis crude cell extract (CCE). The novel GH42 β-galactosidase of Lb. acidophilus had lower activity on lactose, oNPG and pNPG but higher relative activity on pNP analogues compared to GH2 β-galactosidases, and did not transgalactosylate at high lactose concentrations. Temperature and pH optima for lactose hydrolysis varied between GH2 β-galactosidases. oNPG and pNPG were the preferred substrates for hydrolysis; in comparison, activity on pNPG-analogues was less than 1.5%. GH2 β-galactosidases formed structurally similar GOS with varying preferences.  相似文献   

8.
The hydrolysis of cellobiose by β-glucodisases is an important step of cellulose biodegradation. However, the interactive mechanism between cellobiose and β-glucosidases is still unclear until now. Thus, in this study, we explored the binding modes between cellobiose and three β-glucosidases from glycoside hydrolase family 1 by means of molecular docking. The three β-glucosidases were named as TmGH1 (from bacterium Thermotoga), SsGH1 (from archaea Sulfolobus solfataricus) and TrGH1 (from fungus Trichoderma reesei) respectively, according to the monophyletic groups they belong to. Molecular dockings were performed between cellobiose and the three β-glucosidases, resulting in three optimum docking complexes, that is TmGH1-cellobiose, SsGH1-cellobiose and TrGh1-cellobiose complexes. Our docking results indicated that there were non-bonded interactions between cellobiose and the three β-glucosidases. The binding affinities of the three complexes were -13.6669kJ/mol, -13.2973kJ/mol and -18.6492kJ/mol, respectively. Then the detailed interactions were investigated, which revealed the key amino acid residues interacted with cellobiose by hydrogen bonds (H-bonds) or hydrophobic interactions. It was observed that most of the key residues involved in the non-bonded interactions were equivalent and conserved for the three complexes, and these residues were a glutamine, a histidine, a tyrosine, a phenylalanine, three glutamics, and four tryptophans. This information is of great importance for designing β-glucosidase with higher cellobiose-hydrolyzing efficiency.  相似文献   

9.
Mannan is one of the major constituent groups of hemicellulose, which is a renewable resource from higher plants. β-Mannanases are enzymes capable of degrading lignocellulosic biomass. Here, an endo-β-mannanase from Rhizopus microsporus (RmMan134A) was cloned and expressed. The recombinant RmMan134A showed maximal activity at pH?5.0 and 50?°C, and exhibited high specific activity towards locust bean gum (2337?U/mg). To gain insight into the substrate-binding mechanism of RmMan134A, four complex structures (RmMan134A–M3, RmMan134A-M4, RmMan134A-M5 and RmMan134A-M6) were further solved. These structures showed that there were at least seven subsites (?3 to +4) in the catalytic groove of RmMan134A. Mannose in the ?1 subsite hydrogen bonded with His113 and Tyr131, revealing a unique conformation. Lys48 and Val159 formed steric hindrance, which impedes to bond with galactose branches. In addition, the various binding modes of RmMan134A–M5 indicated that subsites ?2 to +2 are indispensable during the hydrolytic process. The structure of RmMan134A–M4 showed that mannotetrose only binds at subsites +1 to +4, and RmMan134A could therefore not hydrolyze mannan oligosaccharides with degree of polymerization ≤4. Through rational design, the specific activity and optimal conditions of RmMan134A were significantly improved. The purpose of this paper is to investigate the structure and function of fungal GH family 134 β-1,4-mannanases, and substrate-binding mechanism of GH family 134 members.  相似文献   

10.
Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.  相似文献   

11.
Adsorption of β-glucosidase from almonds, an enzyme with big molecular size (130?kDa, 6.7?nm molecular diameter), on mesoporous SBA-15 silica in fixed bed column was studied. Previously, zeta potential analysis confirmed that the electrostatic interactions between β-glucosidase and SBA-15 were the driving force of the immobilization process. The maximum difference in the zeta potential was 25?mV at pH 3.5. Adsorption isotherm was classified as an L3 (Langmuir type 3) curve according to the Giles classification and fitted to a double Langmuir equation. The adsorbed amount in a fixed bed column was around 3.5 times higher than the amount reached in the adsorption in batch. In addition, the β-glucosidase was strongly immobilized on SBA-15 with only 7?% of leaching in the washing step with buffer solution. Immobilized β-glucosidase was catalytically active in a continuous process, reaching 100?% substrate conversion and maintaining this activity level for more than 10?h without deactivation of the enzyme. Adsorption-desorption isotherms at 77?K before and after the adsorption were carried out, concluding that the adsorption of β-glucosidase was produced blocking the pore mouth, so that a part of the enzyme penetrates inside and another part stays outside the pore.  相似文献   

12.
Glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidases (GH20s) catalyze the hydrolysis of glycosidic linkages in glycans, glycoproteins and glycolipids. The diverse substrates of GH20s account for their various roles in many important bioprocesses, such as glycoprotein modification, glycoconjugate metabolism, gamete recognition and chitin degradation in fungal cell walls and arthropod exoskeletons. Defects in human GH20s cause lysosomal storage diseases, Alzheimer's disease and osteoarthritis. Similarly, lower levels of GH20s arrest arthropod molting. Although GH20s are promising targets for drug and agrochemical development, designing bioactive molecules to target one specific enzyme is challenging because GH20s share a conserved catalytic mechanism. With the development of structural biology, the last two decades have witnessed a dramatic increase in crystallographic investigations of liganded and unliganded GH20s, providing core information for rational molecular designs. This critical review summarizes recent research advances in GH20s, with a focus on their structural basis of substrate specificity as well as on inhibitor design. As more crystal structures of targeted GH20s are determined and analyzed, dynamics of their catalysis and inhibition will also be elucidated, which will facilitate the development of new drugs, pesticides and agrochemicals.  相似文献   

13.
The gene for a thermostable β-agarase from Agarivorans sp. JA-1 was cloned and sequenced. It comprised an open reading frame of 2,988 base pairs, which encode a protein of 109,450 daltons consisting of 995 amino acid residues. A comparison of the entire sequence showed that the enzyme has 98.8% sequence similarities to β-agarase from Vibrio sp. JT1070, indicating that it belongs to the family glycoside hydrolase (GH)-50. The gene corresponding to a mature protein of 976 amino acids was inserted and expressed in Escherichia coli. The recombinant β-agarase was purified to homogeneity. It had maximal activity at 40°C and pH 8.0 in the presence of 1 mM NaCl and 1 mM CaCl2. The enzyme hydrolyzed agarose as well as neoagarohexaose and neoagarotetraose to yield neoagarobiose as the main product. Thus, the enzyme would be useful for the industrial production of neoagarobiose.  相似文献   

14.
15.
The gene for β-agarase of an Agarivorans sp. JA-1 was expressed in Bacillus subtilis strain DB104 for efficient and economical mass-production of the enzyme. We isolated 360 mg protein with a specific activity of 201 U/mg from the culture broth. The efficiency of production was approximately 130-fold higher than that in E. coli. The enzyme produced neoagarohexaose, neoagarotetraose and neoagarobiose from agar. Neoagarooligosaccharides produced by the enzyme had a whitening effect and inhibited tyrosinase activity in the murine melanoma cell line, B16F10. Neoagarooligosaccharides were not cytotoxic to B16F10 or normal cells. β-Agarase could therefore be a good whitening, cosmetic additive.  相似文献   

16.
Transglucosidases belonging to the glycoside hydrolase (GH) family 70 are promising enzymatic tools for the synthesis of α-glucans with defined structures from renewable sucrose and starch substrates. Depending on the GH70 enzyme specificity, α-glucans with different structures and physicochemical properties are produced, which have found diverse (potential) commercial applications, e.g. in food, health and as biomaterials. Originally, the GH70 family was established only for glucansucrase enzymes of lactic acid bacteria that catalyze the synthesis of α-glucan polymers from sucrose. In recent years, we have identified 3 novel subfamilies of GH70 enzymes (designated GtfB, GtfC and GtfD), inactive on sucrose but converting starch/maltodextrin substrates into novel α-glucans. These novel starch-acting enzymes considerably enlarge the panel of α-glucans that can be produced. They also represent very interesting evolutionary intermediates between sucrose-acting GH70 glucansucrases and starch-acting GH13 α-amylases. Here we provide an overview of the repertoire of GH70 enzymes currently available with focus on these novel starch-acting GH70 enzymes and their biotechnological potential. Moreover, we discuss key developments in the understanding of structure-function relationships of GH70 enzymes in the light of available three-dimensional structures, and the protein engineering strategies that were recently applied to expand their natural product specificities.  相似文献   

17.
Two β-xylosidases of glycoside hydrolase family 3 (GH 3) from Aspergillus nidulans FGSC A4, BxlA and BxlB were produced recombinantly in Pichia pastoris and secreted to the culture supernatants in yields of 16 and 118 mg/L, respectively. BxlA showed about sixfold higher catalytic efficiency (kcat/Km) than BxlB towards para-nitrophenyl β-d-xylopyranoside (pNPX) and β-1,4-xylo-oligosaccharides (degree of polymerisation 2–6). For both enzymes kcat/Km decreased with increasing β-1,4-xylo-oligosaccharide chain length. Using pNPX as donor with 9 monosaccharides, 7 disaccharides and two sugar alcohols as acceptors 18 different β-xylosyl-oligosaccharides were synthesised in 2–36% (BxlA) and 6–66% (BxlB) yields by transxylosylation. BxlA utilised the monosaccharides d-mannose, d-lyxose, d-talose, d-xylose, d-arabinose, l-fucose, d-glucose, d-galactose and d-fructose as acceptors, whereas BxlB used the same except for d-lyxose, d-arabinose and l-fucose. BxlB transxylosylated the disaccharides xylobiose, lactulose, sucrose, lactose and turanose in upto 35% yield, while BxlA gave inferior yields on these acceptors. The regioselectivity was acceptor dependent and primarily involved β-1,4 or 1,6 product linkage formation although minor products with different linkages were also obtained. Five of the 18 transxylosylation products obtained from d-lyxose, d-galactose, turanose and sucrose (two products) as acceptors were novel xylosyl-oligosaccharides, β-d-Xylp-(1→4)-d-Lyxp, β-d-Xylp-(1→6)-d-Galp, β-d-Xylp-(1→4)-α-d-Glcp-(1→3)-β-d-Fruf, β-d-Xylp-(1→4)-α-d-Glcp-(1→2)-β-d-Fruf, and β-d-Xylp-(1→6)-β-d-Fruf-(2→1)-α-d-Glcp, as structure-determined by 2D NMR, indicating that GH3 β-xylosidases are able to transxylosylate a larger variety of carbohydrate acceptors than earlier reported. Furthermore, transxylosylation of certain acceptors resulted in mixtures. Some of these products are also novel, but the structures of the individual products could not be determined.  相似文献   

18.
Applied Microbiology and Biotechnology - A β-1,4-mannanase, termed AoMan134A, that belongs to the GH 134 family was identified in the filamentous fungus Aspergillus oryzae. Recombinant...  相似文献   

19.
Here, we characterize the role of a π-helix in the molecular mechanisms underlying thermoadaptation in the glycoside hydrolase family 4 (GH4). The interspersed π-helix present in a subgroup is evolutionarily related to a conserved α-helix in other orthologs by a single residue insertion/deletion event. The insertional residue, Phe407, in a hyperthermophilic α-glucuronidase, makes specific interactions across the inter-subunit interface. In order to establish the sequence-structure-stability implications of the π-helix, the wild-type and the deletion variant (Δ407) were characterized. The variant showed a significant lowering of melting temperature and optimum temperature for the highest activity. Crystal structures of the proteins show a transformation of the π-helix to a continuous α-helix in the variant, identical to that in orthologs lacking this insertion. Thermodynamic parameters were determined from stability curves representing the temperature dependence of unfolding free energy. Though the proteins display maximum stabilities at similar temperatures, a higher melting temperature in the wild-type is achieved by a combination of higher enthalpy and lower heat capacity of unfolding. Comparisons of the structural changes, and the activity and thermodynamic profiles allow us to infer that specific non-covalent interactions, and the existence of residual structure in the unfolded state, are crucial determinants of its thermostability. These features permit the enzyme to balance the preservation of structure at a higher temperature with the thermodynamic stability required for optimum catalysis.  相似文献   

20.
Functional attributes of recombinant CtCBM35 (family 35 carbohydrate binding module) of β-mannanase of family 26 Glycoside Hydrolase from Clostridium thermocellum were deduced by biochemical and in silico approaches. Ligand-binding analysis of expressed CtCBM35 analyzed by affinity-gel electrophoresis and fluorescence spectroscopy exhibited association constants K a ~ 1.2·105 and 3.0·105 M?1 with locust bean galactomannan and mannotriose, respectively. However, CtCBM35 showed low ligand-binding affinity with insoluble ivory nut mannan with K a of 5.0·10?5 M?1. Unfolding transition analysis by fluorescence spectroscopy explained the conformational changes of CtCBM35 in the presence of guanidine hydrochloride (5 M) and urea (6.25 M). This explained that CtCBM35 has good conformational stability and requires higher free energy of denaturation to invoke unfolding. The three-dimensional (3-D) model of CtCBM35 from C. thermocellum generated by Modeller9v8 displayed predominance of β-sheets arranged as β-jelly-roll fold. The secondary structure of CtCBM35 by PredictProtein showed the presence of two α-helices (3%), 12 β-sheets (45%), and 15 random coils (52%). Secondary structural element analysis of cloned, expressed, and purified recombinant CtCBM35 by circular dichroism also corroborated the in silico predicted secondary structure. Multiple sequence alignment of CtCBM35 showed conserved residues (Tyr123, Gly124, and Phe125), which are commonly observed in mannan specific CBMs. Docking analysis of CtCBM35 with manno-oligosaccharide displayed the involvement of Tyr26, Gln29, Asn43, Trp66, Tyr68, Leu69, Arg76, and Leu127 residues, making polar contact with the ligand molecules. Ligand docking analysis of CtCBM35 exhibiting higher binding affinity with mannotriose and galactomannan (Man-Gal-Man moiety) substantiated the affinity binding and fluorescence results, displaying similar values of K a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号