首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Using a sample of published archaeological data, we expand on an earlier bivariate carbon model for diet reconstruction by adding bone collagen nitrogen stable isotope values (δ(15) N), which provide information on trophic level and consumption of terrestrial vs. marine protein. The bivariate carbon model (δ(13) C(apatite) vs. δ(13) C(collagen) ) provides detailed information on the isotopic signatures of whole diet and dietary protein, but is limited in its ability to distinguish between C(4) and marine protein. Here, using cluster analysis and discriminant function analysis, we generate a multivariate diet reconstruction model that incorporates δ(13) C(apatite) , δ(13) C(collagen) , and δ(15) N holistically. Inclusion of the δ(15) N data proves useful in resolving protein-related limitations of the bivariate carbon model, and splits the sample into five distinct dietary clusters. Two significant discriminant functions account for 98.8% of the sample variance, providing a multivariate model for diet reconstruction. Both carbon variables dominate the first function, while δ(15) N most strongly influences the second. Independent support for the functions' ability to accurately classify individuals according to diet comes from a small sample of experimental rats, which cluster as expected from their diets. The new model also provides a statistical basis for distinguishing between food sources with similar isotopic signatures, as in a previously analyzed archaeological population from Saipan (see Ambrose et al.: AJPA 104(1997) 343-361). Our model suggests that the Saipan islanders' (13) C-enriched signal derives mainly from sugarcane, not seaweed. Further development and application of this model can similarly improve dietary reconstructions in archaeological, paleontological, and primatological contexts.  相似文献   

2.
Stable isotope ratios (δ13C and δ15N) were analyzed from the bone collagen of individuals (n = 8) from a Lapita burial ground (ca. 2800–2350 BP) on Watom Island, located off northeast New Britain in the Bismarck Archipelago. The aim of this study was to assess the diet and subsistence strategies of humans that lived during the later Lapita period in Near Oceania. To aid in the interpretation of the human diet we analyzed the stable isotope ratios of faunal material from the site (n = 27). We also aim to assess methods of animal husbandry at the site over time from an analysis of the stable isotope ratios (δ13C and δ15N) of pig bones (n = 22) from different temporal periods (Lapita, post‐Lapita, and late prehistoric). The protein diet of the humans consisted of marine organisms from the inshore environment and some deep‐water species, most likely marine turtle, in addition to higher trophic level terrestrial foods, likely pig and native animals (e.g., fruit bat, Cuscus and bandicoot). Although the sample sizes were small, females (n = 4) displayed more variable δ13C and δ15N values compared with males (n = 4), which may be associated with the movement of adult females to the island. The stable isotope analysis of the pig bones indicated that there were few differences between the diets of the pigs from the Lapita and post‐Lapita layers, suggesting that the method of pig husbandry was similar between these two periods and was likely relatively free‐range. Am J Phys Anthropol 157:30–41, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
Funerary practices and bioarchaeological (sex and age) data suggest that a mortality crisis linked to an epidemic episode occurred during the fifth phase of the St. Benedict cemetery in Prague (Czech Republic). To identify this mass mortality episode, we reconstructed individual life histories (dietary and mobility factors), assessed the population's biological homogeneity, and proposed a new chronology through stable isotope analysis (δ13C, δ18O and δ15N) and direct radiocarbon dating. Stable isotope analysis was conducted on the bone and tooth enamel (collagen and carbonate) of 19 individuals from three multiple graves (MG) and 12 individuals from individual graves (IG). The δ15N values of collagen and the difference between the δ13C values of collagen and bone carbonate could indicate that the IG individuals had a richer protein diet than the MG individuals or different food resources. The human bone and enamel carbonate and δ18O values suggest that the majority of individuals from MG and all individuals from IG spent most of their lives outside of the Bohemian region. Variations in δ18O values also indicate that all individuals experienced residential mobility during their lives. The stable isotope results, biological (age and sex) data and eight 14C dates clearly differentiate the MG and IG groups. The present work provides evidence for the reuse of the St. Benedict cemetery to bury soldiers despite the funeral protest ban (1635 AD). The Siege of Prague (1742 AD) by French‐Bavarian‐Saxon armies is identified as the cause of the St. Benedict mass mortality event. Am J Phys Anthropol 151:202–214, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
The stable carbon (δ13C) and nitrogen (δ15N) isotope values of bone collagen are frequently used in paleodietary studies to assess the marine contribution to an individual's diet. Surprisingly, the relationship between stable isotope these values characteristics and the percentage of marine foods in diet has never been effectively demonstrated. To clarify this relationship, the stable isotope values and radiocarbon dates of nine humans and one sheep from Herculaneum, all who perished simultaneously during the AD 79 eruption of Vesuvius, were determined. Significant differences were found in the radiocarbon dates which are attributable to the incorporation of “old” carbon from the marine reservoir. The magnitude of the observed differences was linearly correlated with both δ13C and δ15N values allowing the response of each isotope to increasing marine carbon in collagen to be independently verified. Regression analyses showed that for every 1‰ enrichment in δ13C and δ15N, 56 years and 34 years were added to the radiocarbon age, respectively. Predictions of the maximum marine reservoir age differed considerably depending on which stable isotope was considered. This discrepancy is attributed to some degree of macronutrient scrambling whereby nitrogen from marine protein is preferentially incorporated in collagen over marine carbon. It is suggested that the macronutrient scrambling explains the observed relationship between δ13C and δ15N from Roman coastal sites and should be considered when interpreting any diet which is not dominated by protein. Nevertheless, without knowing the degree of macronutrient scrambling in different dietary scenarios, the accuracy of dietary reconstructions is severely compromised. Am J Phys Anthropol 152:345–352, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Tooth enamel apatite carbonate carbon and oxygen isotope ratios of modern kangaroos (Macropus spp.) collected on a 900-km latitudinal transect spanning a C3–C4 transition zone were analysed to create a reference set for palaeoenvironmental reconstruction in southern Australia. The carbon isotope composition of enamel carbonate reflects the proportional intake of C3 and C4 vegetation, and its oxygen isotope composition reflects that of ingested water. Tooth enamel forms incrementally, recording dietary and environmental changes during mineralisation. Analyses show only weak correlations between climate records and latitudinal changes in δ13C and δ18O. No species achieved the δ13C values (~?1.0 ‰) expected for 100 % C4 grazing diets; kangaroos at low latitudes that are classified as feeding primarily on C4 grasses (grazers) have δ13C of up to ?3.5 ‰. In these areas, δ13C below ?12 ‰ suggests a 100 % C3 grass and/or leafy plant (browse) diet while animals from higher latitude have lower δ13C. Animals from semi-arid areas have δ18O of 34–40 ‰, while grazers from temperate areas have lower values (~28–30 ‰). Three patterns with implications for palaeoenvironmental reconstruction emerge: (1) all species in semi-arid areas regularly browse to supplement limited grass resources; (2) all species within an environmental zone have similar carbon and oxygen isotope compositions, meaning data from different kangaroo species can be pooled for palaeoenvironmental investigations; (3) relatively small regional environmental differences can be distinguished when δ13C and δ18O data are used together. These data demonstrate that diet–isotope and climate–isotope relationships should be evaluated in modern ecosystems before application to the regional fossil record.  相似文献   

6.
了解古代儿童的断奶模式和喂养方式,可望为揭示古代儿童的营养状况、生长发育以及其死亡原因提供有价值的重要信息。近些年来,通过对古代儿童骨骼的C、N稳定同位素分析,重建古代儿童的断奶模式和喂养方式,成为国际生物考古界的研究前沿,但在我国尚无任何相关报道。为此,本文以安徽滁州薄阳城遗址人骨(包含不同年龄阶段的儿童和成年人)样品为研究材料,通过对同一个体肋骨和肢骨的C、N稳定同位素分析和比较,重点探讨了我国西周时期儿童的断奶模式及喂养方式。研究结果显示:儿童在2岁已有辅食的摄入,大多数儿童在3-4岁已经完成断奶;断奶后的儿童,其食物中包含更多的植物作为辅食。本研究,印证了我国历史文献中有关儿童喂养模式的最早记载(唐代孙思邈的医书《千金方》),也为系统探索我国古代儿童的断奶模式和喂养方式提供了很好的范例。  相似文献   

7.
As part of the road widening scheme between London and Dover, Oxford Archaeology South uncovered a large boundary ditch of Iron Age origin that contained Iron Age and Roman inhumations, adjacent to which was a small mid-late Roman cemetery, interpreted as a rural cemetery for Romano-British farmers. Grave goods in the cemetery were restricted to a few individuals with hobnailed boots. Bulk bone collagen isotopic analysis of 11 skeletons of Iron Age and Roman date gave a typical C(3) terrestrial signal (average δ(13) C = -19.8‰, δ(15) N = 9.3‰), but also revealed one (SK12671) with a diet which included a substantial C(4) component (δ(13) C = -15.2‰, δ(15) N = 11.2‰). This is only the second such diet reported in Roman Britain. Subsequent δ(18) O(c) and (87) Sr/(86) Sr measurements on the dental enamel in this individual were, however, consistent with a "local" origin, indicating that either C(4) protein was consumed in Late Roman Britain, or that he came from somewhere else, but where conditions gave rise to similar isotopic values. If we accept the latter, then it indicates that using oxygen and strontium isotopes alone to identify "incomers" may be problematic. The provision of hobnailed boots for the dead appears to have had a strong symbolic element in Late Roman Britain. We suggest that in this case the boots may be significant, in that he was being equipped for the long march home.  相似文献   

8.
《Palaeoworld》2022,31(1):169-184
The stable carbon isotope composition of the structural carbonate derived from animal bone hydroxylapatite (δ13CB-HA) could record an animal’s diet. These records provide critical evidence for different paleontological disciplines, e.g., paleodiet analyses, and paleoclimate reconstructions. Compared to those of other body tissues, such as bone collagen or teeth enamel hydroxylapatite, δ13CB-HA values record information on the whole diet of an animal in its last years. δ13CB-HA can be applied to fossil animals of various body sizes. The δ13C analytical instruments available only require that prepared bone samples be approximately 2–5 mg for precise measurement, allowing δ13CB-HA analysis to be feasible on most vertebrate fossils without destructive sampling, especially on small mammals or birds whose teeth are not large enough for sampling or are lost. Moreover, δ13CB-HA can be used from different times or under less than ideal burial environments. For fossils dating back to Devonian or buried in hot and humid regions, dietary information has been completely lost in bone collagen during post-depositional processes but still remained in the δ13CB-HA values because hydroxylapatite is less influenced by diagenetic effects after deposition. In addition, systematic methods such as X-ray diffraction and Fourier transform infrared spectroscopy have been developed to qualitatively or semiquantitatively assess the influence of diagenesis on bone hydroxylapatite to ensure the credibility of the δ13CB-HA values. With the above merits, δ13CB-HA analysis is therefore becoming an increasingly important method in paleodiet-related research. Currently, applications of the δ13CB-HA method on fossil animals are primarily focused on two aspects, namely, paleodietary reconstruction of fossil animals with uncertain diets and paleoenvironmental reconstruction based on the δ13CB-HA values of fossil herbivores. The published researches, combined with our new results from early birds, demonstrate the considerable significance of the δ13CB-HA method in paleontological and paleoenvironmental research. Notably, the δ13CB-HA-based paleodietary analysis of early vertebrates, especially the large number of small birds or mammals discovered in the past decades would be an important work in the near future.  相似文献   

9.
Oxygen isotope compositions of phosphate (δ18Op) were measured in tooth enamel from captive and wild individuals of 8 crocodilian species. A rough linear correlation is observed between the δ18Op of all the studied species and the oxygen isotope composition of ambient water (δ18Ow). Differences in mean air temperature, diet and physiology could contribute significantly to the large scatter of δ18Op values. The combination of these parameters results in a fractionation equation for which the slope (0.82) is lower than that expected (≥ 1) from predictive model equations that assume temperature and diet as fixed parameters. Taking into account large uncertainties, the observed oxygen isotope fractionation between phosphate and ambient water does not statistically differ from that formerly established for aquatic turtles. Case studies show that δ18Op values of fossil crocodile tooth enamel can be used to discriminate between marine and freshwater living environments within a precision of about ± 2‰ only.  相似文献   

10.
R. Sukumar  R. Ramesh 《Oecologia》1992,91(4):536-539
Summary Stable carbon isotope ratios in bone collagen have been used in a variety of dietary studies in modern and fossil animals, including humans. Inherent in the stable isotope technique is the assumption that the isotopic signature is a reflection of the diet and is persistent in collagen because this is a relatively inert protein. Carbon isotope analyses of bones from a southern Indian population of Asian elephant (Elephas maximus), a long-lived mammal that alternates seasonally between a predominantly C3 (browse) and C4 (grass) plant diet, showed two patterns that have important implications for dietary interpretation based on isotopic studies. Relative to the quantity of the two plant types consumed on average, the δ13C signal in collagen indicated that more carbon was incorporated from C3 plants, possibly due to their higher protein contribution. There was a much greater variance in δ13C values of collagen in sub-adult (range -10.5‰ to-22.7‰, variance=14.51) compared to adult animals (range -16.0‰ to -20.3‰, variance=1.85) pointing to high collagen turnover rates and non-persistent isotopic signatures in younger, growing animals. It thus seems important to correct for any significant relative differences in nutritive value of food types and also consider the age of an animal before drawing definite conclusions about its diet from isotope ratios.  相似文献   

11.
We present bone collagen amino acid (AA) δ(13)C values for a range of archaeological samples representing four "benchmark" human diet groups (high marine protein consumers, high freshwater protein consumers, terrestrial C(3) consumers, and terrestrial C(4) consumers), a human population with an "unknown" diet, and ruminants. The aim is to establish an interpretive palaeodietary framework for bone collagen AA δ(13)C values, and to assess the extent to which AA δ(13)C values can provide additional dietary information to bulk collagen stable isotope analysis. Results are analyzed to determine the ability of those AAs for which we have a complete set, to discriminate between the diet groups. We show that very strong statistical discrimination is obtained for all interdiet group comparisons. This is often obvious from suitably chosen bivariate plots using δ(113)C values that have been normalized to compensate for interdiet group differences in bulk δ(13)C values. Bi-plots of non-normalized phenylalanine and valine δ(13)C values are useful for distinguishing aquatic diets (marine and freshwater) from terrestrial diets. Our interpretive framework uses multivariate statistics (e.g., discriminant analysis) to optimize the separation of the AA δ(13)C values of the "benchmark"' diet groups, and is capable of accurately assigning external samples to their expected diet groups. With a growing body of AA δ(13)C values, this method is likely to enhance palaeodietary research by allowing the "unknown" diets of populations under investigation to be statistically defined relative to the well-characterized or "known" diets of previously investigated populations.  相似文献   

12.
Stable carbon isotope analyses of vertebrate hard tissues such as bones, teeth, and tusks provide information about animal diets in ecological, archeological, and paleontological contexts. There is debate about how carbon isotope compositions of collagen and apatite carbonate differ in terms of their relationship to diet, and to each other. We evaluated relationships between δ13Ccollagen and δ13Ccarbonate among free‐ranging southern African mammals to test predictions about the influences of dietary and physiological differences between species. Whereas the slopes of δ13Ccollagen–δ13Ccarbonate relationships among carnivores are ≤1, herbivore δ13Ccollagen increases with increasing dietary δ13C at a slower rate than does δ13Ccarbonate, resulting in regression slopes >1. This outcome is consistent with predictions that herbivore δ13Ccollagen is biased against low protein diet components (13C‐enriched C4 grasses in these environments), and δ13Ccarbonate is 13C‐enriched due to release of 13C‐depleted methane as a by‐product of microbial fermentation in the digestive tract. As methane emission is constrained by plant secondary metabolites in browse, the latter effect becomes more pronounced with higher levels of C4 grass in the diet. Increases in δ13Ccarbonate are also larger in ruminants than nonruminants. Accordingly, we show that Δ13Ccollagencarbonate spacing is not constant within herbivores, but increases by up to 5 ‰ across species with different diets and physiologies. Such large variation, often assumed to be negligible within trophic levels, clearly cannot be ignored in carbon isotope‐based diet reconstructions.  相似文献   

13.
Paleodiet research traditionally interprets differences in collagen isotopic compositions (δ13C, δ15N) as indicators of dietary distinction even though physiological processes likely play some role in creating variation. This research investigates the degree to which bone collagen δ13C and δ15N values normally vary within the skeleton and examines the influence of several diseases common to ancient populations on these isotopic compositions. The samples derive from two medieval German cemeteries and one Swiss reference collection and include examples of metabolic disease (rickets/osteomalacia), degenerative joint disease (osteoarthritis), trauma (fracture), infection (osteomyelitis), and inflammation (periostitis). A separate subset of visibly nonpathological skeletal elements from the German collections established normal intraindividual variation. For each disease type, tests compared bone lesion samples to those near and distant to the lesions sites. Results show that normal (nonpathological) skeletons exhibit limited intraskeletal variation in carbon‐ and nitrogen‐isotope ratios, suggesting that sampling of distinct elements is appropriate for paleodiet studies. In contrast, individuals with osteomyelitis, healed fractures, and osteoarthritis exhibit significant intraskeletal differences in isotope values, depending on whether one is comparing lesions to near or to distant sites. Skeletons with periostitis result in significant intraskeletal differences in nitrogen isotope values only, while those with rickets/osteomalacia do not exhibit significant intraskeletal differences. Based on these results, we suggest that paleodiet researchers avoid sampling collagen at or close to lesion sites because the isotope values may be reflecting both altered metabolic processes and differences in diet relative to others in the population. Am J Phys Anthropol 153:598–604, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Sympatric species are expected to differ in ecological requirements to minimize niche overlap and avoid competition. Here we assess the trophic interactions among three coexisting dolphin species from southern Brazil: the franciscana dolphin (Pontoporia blainvillei), the Guiana dolphin (Sotalia guianensis), and the Lahille's bottlenose dolphin (Tursiops truncatus gephyreus). We evaluated temporal variation in carbon (δ13C) and nitrogen (δ15N) isotope values of bone collagen to examine potential dietary shifts resulting from increased fishing activity over the past three decades. We estimated the degree of niche overlap among these species and the contribution of potential prey sources to their diet. δ15N values were consistent among species and across years, while δ13C values increased for Guiana dolphins and decreased for bottlenose dolphins, suggesting changes in diet and/or foraging habitats through time. The similar δ13C and δ15N values and the high niche overlap between Guiana and bottlenose dolphins indicate that these species are primarily feeding on demersal prey. The franciscana diet is primarily composed of pelagic prey, resulting in a lower niche overlap in comparison with the other dolphin species. Our study provides further information about the foraging ecology of this unique dolphin community in southern Brazil with implications for its management and conservation.  相似文献   

15.
The origins of sickle-cell disease (SCD) are well understood, as are its evolutionary pressures on humans and pathological presentation. However, because it has not been possible to identify SCD in archaeological contexts, its biocultural effects on past populations are unknown. Previous research investigating oxygen isotope fractionation during respiration among anemics suggests that oxygen isotopes in bone apatite may provide a biological marker for SCD in skeletal remains. This pilot study reports δ(18) O ratios in bone apatite of transgenic laboratory mice expressing human SCD globins and compares them to healthy control mice. The δ(18) O ratios of sick mice are significantly lower than those of healthy mice (-5.6‰ vs. -4.5‰; P = 0.002), and the sickest mice exhibit the lowest ratios of all (mean δ(18) O = -5.8‰). These preliminary results suggest that this method may be usefully applied to skeletal materials of past human populations whose diets and water sources do not differ substantially.  相似文献   

16.
We report isotopic data (δ2H, δ18O n = 196; δ13C, δ15N n = 142; δ34S n = 85) from human hair and drinking water (δ2H, δ18O n = 67) collected across China, India, Mongolia, and Pakistan. Hair isotope ratios reflected the large environmental isotopic gradients and dietary differences. Geographic information was recorded in H and O and to a lesser extent, S isotopes. H and O data were entered into a recently developed model describing the relationship between the H and O isotope composition of human hair and drinking water in modern USA and pre‐globalized populations. This has anthropological and forensic applications including reconstructing environment and diet in modern and ancient human hair. However, it has not been applied to a modern population outside of the USA, where we expect different diet. Relationships between H and O isotope ratios in drinking water and hair of modern human populations in Asia were different to both modern USA and pre‐globalized populations. However, the Asian dataset was closer to the modern USA than to pre‐globalized populations. Model parameters suggested slightly higher consumption of locally producedfoods in our sampled population than modern USA residents, but lower than pre‐globalized populations. The degree of in vivo amino acid synthesis was comparable to both the modern USA and pre‐globalized populations. C isotope ratios reflected the predominantly C3‐based regional agriculture and C4 consumption in northernChina. C, N, and S isotope ratios supported marine food consumption in some coastal locales. N isotope ratios suggested a relatively low consumption of animal‐derived products compared to western populations. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Although the globalization of food production is often assumed to result in a homogenization of consumption patterns with a convergence towards a Western style diet, the resources used to make global food products may still be locally produced (glocalization). Stable isotope ratios of human hair can quantify the extent to which residents of industrialized nations have converged on a standardized diet or whether there is persistent heterogeneity and glocalization among countries as a result of different dietary patterns and the use of local food products. Here we report isotopic differences among carbon, nitrogen and sulfur isotope ratios of human hair collected in thirteen Western European countries and in the USA. European hair samples had significantly lower δ(13)C values (-22.7 to -18.3‰), and significantly higher δ(15)N (7.8 to 10.3‰) and δ(34)S (4.8 to 8.3‰) values than samples from the USA (δ(13)C: -21.9 to -15.0‰, δ(15)N: 6.7 to 9.9‰, δ(34)S: -1.2 to 9.9‰). Within Europe, we detected differences in hair δ(13)C and δ(34)S values among countries and covariation of isotope ratios with latitude and longitude. This geographic structuring of isotopic data suggests heterogeneity in the food resources used by citizens of industrialized nations and supports the presence of different dietary patterns within Western Europe despite globalization trends. Here we showed the potential of stable isotope analysis as a population-wide tool for dietary screening, particularly as a complement of dietary surveys, that can provide additional information on assimilated macronutrients and independent verification of data obtained by those self-reporting instruments.  相似文献   

18.
Abstract Differences between diet and tissue isotope values known as trophic shifts (Δδ13C and Δδ15N) occur during digestion and assimilation of consumed food. Consideration of trophic shifts is essential when using stable isotopes for dietary reconstruction but has received little attention for cervids. Therefore, our purpose was to determine C and N trophic shifts in tissues of captive white-tailed deer (Odocoileus virginianus) fed corn and alfalfa in known amounts over a 4-month period. Antler has also received limited consideration for use in dietary reconstruction, thus, we analyzed tissue to expose variation among locations along the main beam and between antler components. We collected antler, hair, red blood cells (RBCs), and serum at the end of the feeding trial and analyzed them to determine C (δ13C) and N (δ15N) isotope values. Trophic shifts occurred between diet and all tissues for both isotopes with mean Δδ13C = 1.19 ± 2.23% and Δδ15N = 4.93 ± 0.74%. Antler trophic shifts were greater than those in all other tissues for δ13C, whereas antler and RBCs shared similar trophic enrichment over diet but differed from hair and serum for Δδ15N. Trophic shift values were significantly related to diet in hair and serum for δ13C and antler and RBCs for Δδ15N. Isotope values for antler core and periphery plus antler locations along the main beam did not vary. Antler collagen significantly varied from whole antler for δ13C but not δ15N. Our findings provide mean trophic shift values by tissue that can be used for dietary reconstruction in the study and management of cervids.  相似文献   

19.
Sr/Ca and Ba/Ca ratios of bone are commonly used as biochemical indicators of trophic level in modern and fossil mammals. Concerns over the effects of diagenesis on Sr/Ca and Ba/Ca ratios of bone led archaeologists and paleontologists to favor tooth enamel, which is less prone to alteration. Sr/Ca and Ba/Ca ratios of bone, enamel, and dentin from three farm-raised steers (Bos taurus) and five wild white-tailed deer (Odocoileus virginianus) from central Missouri were compared. Our results show that changes in diet, discrimination, and growth rate during ontogeny can lead to significant differences in Sr/Ca and Ba/Ca ratios of different bioapatite types as well as significant differences within the same bioapatite forming at different times. Early- and late-forming tooth enamel can have significant differences in Sr/Ca and Ba/Ca ratios equivalent to almost one full trophic step. Although differences between early- and late-forming dentin are typically not significant, dentin Sr/Ca and Ba/Ca ratios are significantly greater than enamel values. This difference in Sr/Ca or Ba/Ca ratios between enamel and dentin from the same tooth can be greater than one full trophic step. These results have profound implications for the use of dental bioapatites in trophic level reconstructions. They highlight the importance of consistency in bioapatite selection, tooth selection, and relative location of sampling within the enamel cap. Furthermore, this expected difference in Sr/Ca and Ba/Ca ratios could be used as another means of checking for diagenetic alteration in ancient samples.  相似文献   

20.
Stable isotope ratios of C and N in the bone tissue of three different skeletal elements (angular, cleithrum and vertebra) of three fish species from different evolutionary lineages (Clupeiformes, Atheriniformes and Notothenioidei) were determined before (δ13Cbulk and δ15Nbulk) and after demineralization and delipidation (δ13Cdml and δ15Ndml). One of the species had cellular bone and the other two had acellular bone. Results revealed that δ15N and δ13C values from different skeletal elements were interchangeable in species with acellular bone, but caution was needed in species with cellular bone, as δ15N values varied among skeletal elements. Furthermore, δ15Nbulk values were significantly lower than δ15Ndml values in the three species, thus suggesting that they are not comparable. This difference is probably because δ15Nbulk refers to total bone protein and δ15Ndml to collagen only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号