首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HOPS proofreads the trans-SNARE complex for yeast vacuole fusion   总被引:2,自引:0,他引:2       下载免费PDF全文
The fusion of yeast vacuoles, like other organelles, requires a Rab-family guanosine triphosphatase (Ypt7p), a Rab effector and Sec1/Munc18 (SM) complex termed HOPS (homotypic fusion and vacuole protein sorting), and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The central 0-layer of the four bundled vacuolar SNAREs requires the wild-type three glutaminyl (Q) and one arginyl (R) residues for optimal fusion. Alterations of this layer dramatically increase the K(m) value for SNAREs to assemble trans-SNARE complexes and to fuse. We now find that added purified HOPS complex strongly suppresses the fusion of vacuoles bearing 0-layer alterations, but it has little effect on the fusion of vacuoles with wild-type SNAREs. HOPS proofreads at two levels, inhibiting the formation of trans-SNARE complexes with altered 0-layers and suppressing the ability of these mismatched 0-layer trans-SNARE complexes to support membrane fusion. HOPS proofreading also extends to other parts of the SNARE complex, because it suppresses the fusion of trans-SNARE complexes formed without the N-terminal Phox homology domain of Vam7p (Q(c)). Unlike some other SM proteins, HOPS proofreading does not require the Vam3p (Q(a)) N-terminal domain. HOPS thus proofreads SNARE domain and N-terminal domain structures and regulates the fusion capacity of trans-SNARE complexes, only allowing full function for wild-type SNARE configurations. This is the most direct evidence to date that HOPS is directly involved in the fusion event.  相似文献   

2.
Homotypic vacuole fusion occurs in ordered stages of priming, docking, and fusion. Priming, which prepares vacuoles for productive association, requires Sec17p (the yeast homolog of alpha-SNAP), Sec18p (the yeast NSF, an ATP-driven chaperone), and ATP. Sec17p is initially an integral part of the cis-SNARE complex together with vacuolar SNARE proteins and Sec18p (NSF). Previous studies have shown that Sec17p is rapidly released from the vacuole membrane during priming as the cis-SNARE complex is disassembled, but the order and causal relationship of these subreactions has not been known. We now report that the addition of excess recombinant his(6)-Sec17p to primed vacuoles can block subsequent docking. This inhibition is reversible by Sec18p, but the reaction cannot proceed to the tethering and trans-SNARE pairing steps of docking while the Sec17p block is in place. Once docking has occurred, excess Sec17p does not inhibit membrane fusion per se. Incubation of cells with thermosensitive Sec17-1p at nonpermissive temperature causes SNARE complex disassembly. These data suggest that Sec17p can stabilize vacuolar cis-SNARE complexes and that the release of Sec17p by Sec18p and ATP allows disassembly of this complex and activates its components for docking.  相似文献   

3.
Homotypic fusion of yeast vacuoles requires a regulated sequence of events. During priming, Sec18p disassembles cis-SNARE complexes. The HOPS complex, which is initially associated with the cis-SNARE complex, then mediates tethering. Finally, SNAREs assemble into trans-complexes before the membranes fuse. The t-SNARE of the vacuole, Vam3p, plays a central role in the coordination of these processes. We deleted the N-terminal region of Vam3p to analyze the role of this domain in membrane fusion. The truncated protein (Vam3 Delta N) is sorted normally to the vacuole and is functional, because the vacuolar morphology is unaltered in this strain. However, in vitro vacuole fusion is strongly reduced due to the following reasons: Assembly, as well as disassembly of the cis-SNARE complex is more efficient on Vam3 Delta N vacuoles; however, the HOPS complex is not associated well with the Vam3 Delta N cis-complex. Thus, primed SNAREs from Vam3 Delta N vacuoles cannot participate efficiently in the reaction because trans-SNARE pairing is substantially reduced. We conclude that the N-terminus of Vam3p is required for coordination of priming and docking during homotypic vacuole fusion.  相似文献   

4.
Mima J  Hickey CM  Xu H  Jun Y  Wickner W 《The EMBO journal》2008,27(15):2031-2042
The homotypic fusion of yeast vacuoles, each with 3Q- and 1R-SNARE, requires SNARE chaperones (Sec17p/Sec18p and HOPS) and regulatory lipids (sterol, diacylglycerol and phosphoinositides). Pairs of liposomes of phosphatidylcholine/phosphatidylserine, bearing three vacuolar Q-SNAREs on one and the R-SNARE on the other, undergo slow lipid mixing, but this is unaffected by HOPS and inhibited by Sec17p/Sec18p. To study these essential fusion components, we reconstituted proteoliposomes of a more physiological composition, bearing vacuolar lipids and all four vacuolar SNAREs. Their fusion requires Sec17p/Sec18p and HOPS, and each regulatory lipid is important for rapid fusion. Although SNAREs can cause both fusion and lysis, fusion of these proteoliposomes with Sec17p/Sec18p and HOPS is not accompanied by lysis. Sec17p/Sec18p, which disassemble SNARE complexes, and HOPS, which promotes and proofreads SNARE assembly, act synergistically to form fusion-competent SNARE complexes, and this synergy requires phosphoinositides. This is the first chemically defined model of the physiological interactions of these conserved fusion catalysts.  相似文献   

5.
Intracellular membrane fusion requires Rab GTPases, tethers, SNAREs of the R, Qa, Qb, and Qc families, and SNARE chaperones of the Sec17 (SNAP), Sec18 (NSF), and SM (Sec1/Munc18) families. The vacuolar HOPS complex combines the functions of membrane tethering and SM catalysis of SNARE assembly. HOPS is activated for this catalysis by binding to the vacuolar lipids and Rab. Of the eight major vacuolar lipids, we now report that phosphatidylinositol and phosphatidylinositol-3-phosphate are required to activate HOPS for SNARE complex assembly. These lipids plus ergosterol also allow full trans-SNARE complex assembly, yet do not support fusion, which is reliant on either phosphatidylethanolamine (PE) or on phosphatidic acid (PA), phosphatidylserine (PS), and diacylglycerol (DAG). Fusion with a synthetic tether and without HOPS, or even without SNAREs, still relies on either PE or on PS, PA, and DAG. These lipids are thus required for the terminal bilayer rearrangement step of fusion, distinct from the lipid requirements for the earlier step of activating HOPS for trans-SNARE assembly.  相似文献   

6.
It is presently not clear how the function of SNARE proteins is affected by their transmembrane domains. Here, we analyzed the role of the transmembrane domain of the vacuolar SNARE Vam3 by replacing it by a lipid anchor. Vacuoles with mutant Vam3 fuse poorly and have increased amounts of cis-SNARE complexes, indicating that they are more stable. As a consequence efficient cis-SNARE complex disassembly that occurs at priming as a prerequisite of fusion requires addition of exogenous Sec18. trans-SNARE complexes in this mutant accumulate up to 4-fold over wild type, suggesting that the transmembrane domain of Vam3 is required to transit through this step. Finally, palmitoylation of Vac8, a reaction that also occurs early during priming is reduced by almost one-half. Since palmitoylated Vac8 is required beyond trans-SNARE complex formation, this may partially explain the fusion deficiency.  相似文献   

7.
The fusion of yeast vacuolar membranes depends on the disassembly of cis–soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes and the subsequent reassembly of new SNARE complexes in trans. The disassembly of cis-SNARE complexes by Sec17/Sec18p releases the soluble SNARE Vam7p from vacuolar membranes. Consequently, Vam7p needs to be recruited to the membrane at future sites of fusion to allow the formation of trans-SNARE complexes. The multisubunit tethering homotypic fusion and vacuole protein sorting (HOPS) complex, which is essential for the fusion of vacuolar membranes, was previously shown to have direct affinity for Vam7p. The functional significance of this interaction, however, has been unclear. Using a fully reconstituted in vitro fusion reaction, we now show that HOPS facilitates membrane fusion by recruiting Vam7p for fusion. In the presence of HOPS, unlike with other tethering agents, very low levels of added Vam7p suffice to induce vigorous fusion. This is a specific recruitment of Vam7p rather than an indirect stimulation of SNARE complex formation through tethering, as HOPS does not facilitate fusion with a low amount of a soluble form of another vacuolar SNARE, Vti1p. Our findings establish yet another function among the multiple tasks that HOPS performs to catalyze the fusion of yeast vacuoles.  相似文献   

8.
The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to the tethering/docking stage. Ccz1 and Mon1 form a stable protein complex that binds the vacuole membrane. In the absence of the Ccz1-Mon1 complex, the integrity of vacuole SNARE pairing and the unpaired SNARE class C Vps/HOPS complex interaction were both impaired. The Ccz1-Mon1 complex colocalized with other fusion components on the vacuole as part of the cis-SNARE complex, and the association of the Ccz1-Mon1 complex with the vacuole appeared to be regulated by the class C Vps/HOPS complex proteins. Accordingly, we propose that the Ccz1-Mon1 complex is critical for the Ypt7-dependent tethering/docking stage leading to the formation of a trans-SNARE complex and subsequent vacuole fusion.  相似文献   

9.
Membrane fusion requires tethers, SNAREs of R, Qa, Qb, and Qc families, and chaperones of the SM, Sec17/SNAP, and Sec18/NSF families. SNAREs have N-domains, SNARE domains that zipper into 4-helical RQaQbQc coiled coils, a short juxtamembrane (Jx) domain, and (often) a C-terminal transmembrane anchor. We reconstitute fusion with purified components from yeast vacuoles, where the HOPS protein combines tethering and SM functions. The vacuolar Rab, lipids, and R-SNARE activate HOPS to bind Q-SNAREs and catalyze trans-SNARE associations. With SNAREs initially disassembled, as they are on the organelle, we now report that R- and Qa-SNAREs require their physiological juxtamembrane (Jx) regions for fusion. Swap of the Jx domain between the R- and Qa-SNAREs blocks fusion after SNARE association in trans. This block is bypassed by either Sec17, which drives fusion without requiring complete SNARE zippering, or transmembrane-anchored Qb-SNARE in complex with Qa. The abundance of the trans-SNARE complex is not the sole fusion determinant, as it is unaltered by Sec17, Jx swap, or the Qb-transmembrane anchor. The sensitivity of fusion to Jx swap in the absence of a Qb transmembrane anchor is inherent to the SNAREs, because it remains when a synthetic tether replaces HOPS.  相似文献   

10.
Assembly and disassembly of the SNARE membrane-protein complexes plays a key role in vesicular trafficking. The SM-family Slyl protein binds to the tSNARE Sed5 protein and stimulates its assembly into a trans-SNARE complex. Disassembly of the resulting cis-SNARE complex containing Sed5 was retarded in a temperature-sensitive yeast mutant of Slyl protein with a defect in binding to Sed5. A temperature-sensitive mutation (sec18-1) of Sec18/NSF disassembly ATPase showed synthetic lethality with the sly1(ts) mutation. These results suggest that Slyl and Sec18 proteins work cooperatively and that the binding of Slyl to Sed5 stimulates the disassembly of the cis-SNARE complex by Sec18 ATPase.  相似文献   

11.
SNARE‐dependent membrane fusion requires the disassembly of cis‐SNARE complexes (formed by SNAREs anchored to one membrane) followed by the assembly of trans‐SNARE complexes (SNAREs anchored to two apposed membranes). Although SNARE complex disassembly and assembly might be thought to be opposing reactions, the proteins promoting disassembly (Sec17p/Sec18p) and assembly (the HOPS complex) work synergistically to support fusion. We now report that trans‐SNARE complexes formed during vacuole fusion are largely associated with Sec17p. Using a reconstituted proteoliposome fusion system, we show that trans‐SNARE complex, like cis‐SNARE complex, is sensitive to Sec17p/Sec18p mediated disassembly. Strikingly, HOPS inhibits the disassembly of SNARE complexes in the trans‐, but not in the cis‐, configuration. This selective HOPS preservation of trans‐SNARE complexes requires HOPS:SNARE recognition and is lost when the apposed bilayers are dissolved in Triton X‐100; it is also observed during fusion of isolated vacuoles. HOPS thus directs the Sec17p/Sec18p chaperone system to maximize functional trans‐SNARE complex for membrane fusion, a new role of tethering factors during membrane traffic.  相似文献   

12.
Intracellular membrane fusion requires complexes of syntaxins with other SNARE proteins and regulatory Sec1/Munc18 (SM) proteins. In membrane fusion mediating, e.g., neurotransmitter release or glucose-stimulated insulin secretion in mammals, SM proteins preferentially interact with the inactive closed, rather than the active open, conformation of syntaxin or with the assembled SNARE complex. Other membrane fusion processes such as vacuolar fusion in yeast involve like membranes carrying cis-SNARE complexes, and the role of SM protein is unknown. We investigated syntaxin-SM protein interaction in membrane fusion of Arabidopsis cytokinesis, which involves cytokinesis-specific syntaxin KNOLLE and SM protein KEULE. KEULE interacted with an open conformation of KNOLLE that complemented both knolle and keule mutants. This interaction occurred at the cell division plane and required the KNOLLE linker sequence between helix Hc and SNARE domain. Our results suggest that in cytokinesis, SM protein stabilizes the fusion-competent open form of syntaxin, thereby promoting trans-SNARE complex formation.  相似文献   

13.
Membrane fusion within the endomembrane system follows a defined order of events: membrane tethering, mediated by Rabs and tethers, assembly of soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE) complexes, and lipid bilayer mixing. Here we present evidence that the vacuolar HOPS tethering complex controls fusion through specific interactions with the vacuolar SNARE complex (consisting of Vam3, Vam7, Vti1, and Nyv1) and the N-terminal domains of Vam7 and Vam3. We show that homotypic fusion and protein sorting (HOPS) binds Vam7 via its subunits Vps16 and Vps18. In addition, we observed that Vps16, Vps18, and the Sec1/Munc18 protein Vps33, which is also part of the HOPS complex, bind to the Q-SNARE complex. In agreement with this observation, HOPS-stimulated fusion was inhibited if HOPS was preincubated with the minimal Q-SNARE complex. Importantly, artificial targeting of Vam7 without its PX domain to membranes rescued vacuole morphology in vivo, but resulted in a cytokinesis defect if the N-terminal domain of Vam3 was also removed. Our data thus support a model of HOPS-controlled membrane fusion by recognizing different elements of the SNARE complex.  相似文献   

14.
In yeast, assembly of exocytic soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor (SNARE) complexes between the secretory vesicle SNARE Sncp and the plasma membrane SNAREs Ssop and Sec9p occurs at a late stage of the exocytic reaction. Mutations that block either secretory vesicle delivery or tethering prevent SNARE complex assembly and the localization of Sec1p, a SNARE complex binding protein, to sites of secretion. By contrast, wild-type levels of SNARE complexes persist in the sec1-1 mutant after a secretory block is imposed, suggesting a role for Sec1p after SNARE complex assembly. In the sec18-1 mutant, cis-SNARE complexes containing surface-accessible Sncp accumulate in the plasma membrane. Thus, one function of Sec18p is to disassemble SNARE complexes on the postfusion membrane.  相似文献   

15.
A previous report described lipid mixing of reconstituted proteoliposomes made using lipid mixtures that mimic the composition of yeast vacuoles. This lipid mixing required SNARE {SNAP [soluble NSF (N-ethylmaleimide-sensitive factor)-attachment protein] receptor} proteins, Sec18p and Sec17p (yeast NSF and α-SNAP) and the HOPS (homotypic fusion and protein sorting)-Class C Vps (vacuole protein sorting) complex, but not the vacuolar Rab GTPase Ypt7p. The present study investigates the activity of Ypt7p in proteoliposome lipid mixing. Ypt7p is required for the lipid mixing of proteoliposomes lacking cardiolipin [1,3-bis-(sn-3'-phosphatidyl)-sn-glycerol]. Omission of other lipids with negatively charged and/or small head groups does not cause Ypt7p dependence for lipid mixing. Yeast vacuoles made from strains disrupted for CRD1 (cardiolipin synthase) fuse to the same extent as vacuoles from strains with functional CRD1. Disruption of CRD1 does not alter dependence on Rab GTPases for vacuole fusion. It has been proposed that the recruitment of the HOPS complex to membranes is the main function of Ypt7p. However, Ypt7p is still required for lipid mixing even when the concentration of HOPS complex in lipid-mixing reactions is adjusted such that cardiolipin-free proteoliposomes with or without Ypt7p bind to equal amounts of HOPS. Ypt7p therefore must stimulate membrane fusion by a mechanism that is in addition to recruitment of HOPS to the membrane. This is the first demonstration of such a stimulatory activity--that is, beyond bulk effector recruitment--for a Rab GTPase.  相似文献   

16.
SNARE functions during membrane docking and fusion are regulated by Sec1/Munc18 (SM) chaperones and Rab/Ypt GTPase effectors. These functions for yeast vacuole fusion are combined in the six-subunit HOPS complex. HOPS facilitates Ypt7p nucleotide exchange, is a Ypt7p effector, and contains an SM protein. We have dissected the associations and requirements for HOPS, Ypt7p, and Sec17/18p during SNARE complex assembly. Vacuole SNARE complexes bind either Sec17p or the HOPS complex, but not both. Sec17p and its co-chaperone Sec18p disassemble SNARE complexes. Ypt7p regulates the reassembly of unpaired SNAREs with each other and with HOPS, forming HOPS.SNARE complexes prior to fusion. After HOPS.SNARE assembly, lipid rearrangements are still required for vacuole content mixing. Thus, Sec17p and HOPS have mutually exclusive interactions with vacuole SNAREs to mediate disruption of SNARE complexes or their assembly for docking and fusion. Sec17p may displace HOPS from SNAREs to permit subsequent rounds of fusion.  相似文献   

17.
Horsnell WG  Steel GJ  Morgan A 《Biochemistry》2002,41(16):5230-5235
N-Ethylmaleimide-sensitive fusion protein (NSF) and its yeast orthologue, Sec18, are cytoplasmic AAA(+) ATPases required for most intracellular membrane fusion events. The primary function of NSF is thought to be the disassembly of cis-SNARE complexes, thus allowing trans-SNARE complex formation and subsequent membrane fusion. The importance of NSF/Sec18 in intracellular membrane traffic in vivo is highlighted by the inhibition of neurotransmission in Drosophila comatose (NSF) mutants and of constitutive secretion in yeast sec18 mutants. However, the underlying biochemical defects in these mutant proteins are largely unknown. Here, we identify the sec18-1 mutation as a G89D substitution in the N domain of Sec18p. This mutation results in an inhibition of the mutant protein's ability to bind to Sec17p (yeast alpha-SNAP). In contrast, engineering the comatose(st53)() mutation (S483L) into mammalian NSF (S491L) has no effect on alpha-SNAP binding. Instead, the stimulation of ATPase activity by alpha-SNAP required for wild-type NSF to disassemble SNARE complexes does not occur in the mutant NSF(st53) protein. This biochemical phenotype predicts a dominant negative effect, which was confirmed by engineering the st53 mutation into Sec18 (A505L), resulting in a dominant lethal phenotype in vivo. These findings suggest a biochemical basis for the block in membrane fusion observed in the mutant organisms. Furthermore, the mutants characterized here define key residues involved in two essential, but mechanistically distinct, biochemical functions of NSF: SNAP binding and SNAP-dependent ATPase stimulation.  相似文献   

18.
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.  相似文献   

19.
Jun Y  Xu H  Thorngren N  Wickner W 《The EMBO journal》2007,26(24):4935-4945
Intracellular membrane fusion requires SNARE proteins in a trans-complex, anchored to apposed membranes. Proteoliposome studies have suggested that SNAREs drive fusion by stressing the lipid bilayer via their transmembrane domains (TMDs), and that SNARE complexes require a TMD in each docked membrane to promote fusion. Yeast vacuole fusion is believed to require three Q-SNAREs from one vacuole and the R-SNARE Nyv1p from its fusion partner. In accord with this model, we find that fusion is abolished when the TMD of Nyv1p is replaced by lipid anchors, even though lipid-anchored Nyv1p assembles into trans-SNARE complexes. However, normal fusion is restored by the addition of both Sec18p and the soluble SNARE Vam7p. In restoring fusion, Sec18p promotes the disassembly of trans-SNARE complexes, and Vam7p enhances their assembly. Thus, either the TMD of this R-SNARE is not essential for fusion, and TMD-mediated membrane stress is not the only mode of trans-SNARE complex action, or these SNAREs have more flexibility than heretofore appreciated to form alternate functional complexes that violate the 3Q:1R rule.  相似文献   

20.
Fusion of yeast vacuoles requires the Rab GTPase Ypt7p, four SNAREs (soluble N-ethylmaleimide–sensitive factor attachment protein receptors), the SNARE disassembly chaperones Sec17p/Sec18p, vacuolar lipids, and the Rab-effector complex HOPS (homotypic fusion and vacuole protein sorting). Two HOPS subunits have direct affinity for Ypt7p. Although vacuolar fusion has been reconstituted with purified components, the functional relationships between individual lipids and Ypt7p:GTP have remained unclear. We now report that acidic lipids function with Ypt7p as coreceptors for HOPS, supporting membrane tethering and fusion. After phosphorylation by the vacuolar kinase Yck3p, phospho-HOPS needs both Ypt7p:GTP and acidic lipids to support fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号