首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Epigenetic mechanisms such as DNA methylation play important role in cancer. Epigenetic alterations involved in the onset and progression of breast cancer may serve as biomarkers for early detection and prediction of disease prognosis. Furthermore, using body fluids such as serum offers a non-invasive method to procure multiple samples for biomarker analyses. The aim of this study is to determine the correlation between methylation status of multiple cancer genes, p16(INK4A), p14(ARF), Cyclin D2 and Slit2 in invasive ductal carcinoma of the breast and paired serum DNA and clinicopathological parameters. Of the 36 breast cancer patients investigated, 31 (86%) tumors and 30 (83%) paired sera showed methylation of at least one of these 4 genes. Methylation frequencies varied from 27% for CyclinD2, 44% for p16(INK4A), 47% for p14(ARF) to 58% for Slit2. There was concordance between DNA methylation in tumor and paired serum DNA of each gene. This study underscores the potential utility of DNA methylation based screening of serum as a surrogate marker for tumor DNA methylation status of these genes in breast cancer. Further, expression profile of p16(INK4A) could be linked to epigenetic events, thus suggesting this pathway as a potential target for therapeutic strategies based on reversal of epigenetic silencing.  相似文献   

4.
5.
6.
The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.  相似文献   

7.
Aberrant DNA methylation is critical for development and progression of breast cancer. We investigated the association of CpG island methylation in candidate genes and clinicopathological features in 65 African-American (AA) and European-American (EA) breast cancer patients. Quantitative methylation analysis was carried out on bisulfite modified genomic DNA and sequencing (pyrosequencing) for promoter CpG islands of p16, ESR1, RASSF1A, RARβ2, CDH13, HIN1, SFRP1 genes and the LINE1 repetitive element using matched paired non-cancerous and breast tumor specimen (32 AA and 33 EA women). Five of the genes, all known tumor suppressor genes (RASSF1A, RARβ2, CDH13, HIN1 and SFRP1), were found to be frequently hypermethylated in breast tumor tissues but not in the adjacent non-cancerous tissues. Significant differences in the CDH13 methylation status were observed by comparing DNA methylation between AA and EA patients, with more obvious CDH13 methylation differences between the two patient groups in the ER- disease and among young patients (age<50). In addition, we observed associations between CDH13, SFRP1, and RASSF1A methylation and breast cancer subtypes and between SFRP1 methylation and patient's age. Furthermore, tumors that received neoadjuvant therapy tended to have reduced RASSF1A methylation when compared with chemotherapy na?ve tumors. Finally, Kaplan Meier survival analysis showed a significant association between methylation at 3 loci (RASSF1A, RARβ2 and CDH13) and reduced overall disease survival. In conclusion, the DNA methylation status of breast tumors was found to be significantly associated with clinicopathological features and race/ethnicity of the patients.  相似文献   

8.
Epigenetic field for cancerization   总被引:2,自引:0,他引:2  
  相似文献   

9.
Silencing of tumor suppressor genes (TSGs), by DNA methylation, is well known in adult cancers. However, based on the "stem cell" theory of tumorigenesis, the early epigenetic events arising in malignant precursors remain unknown. A recent report demonstrates that, while pluripotent embryonic stem cells lack DNA methylation and possess a "bivalent" pattern of activating and repressive histone marks in numerous TSGs, analogous multipotent malignant cells derived from germ cell tumors (embryonic carcinoma cells) gain additional silencing modifications to those same genes. These results suggest a possible mechanism by which aberrant differentiation, mediated by histone and DNA methylation, instigates tumor progression.  相似文献   

10.
11.
Tsai KW  Liao YL  Wu CW  Hu LY  Li SC  Chan WC  Ho MR  Lai CH  Kao HW  Fang WL  Huang KH  Lin WC 《Epigenetics》2011,6(10):1189-1197
Carcinogenesis of the stomach involves multiple steps including genetic mutation or epigenetic alteration of tumor suppressor genes or oncogenes. Recently, tumor suppressive miRNAs have been shown to be deregulated by aberrant hypermethylation during gastric cancer progression. In this study, we demonstrate that three independent genetic loci encoding for miR-9 (miR-9-1, miR-9-2 and miR-9-3) are simultaneously modified by DNA methylation in gastric cancer cells. Methylation-mediated silencing of these three miR-9 genes can be reactivated in gastric cancer cells through 5-Aza-dC treatment. Subsequent analysis of the expression levels of miR-9 showed that it was significantly down-regulated in gastric cancers compared with adjacent normal tissues (P value < 0.005). A similar tendency toward a tumor-specific DNA methylation pattern was shown for miR-9-1, miR-9-2 and miR-9-3 in 72 primary human gastric cancer specimens. Ectopic expression of miR-9 inhibited cell proliferation, migration and invasion, suggesting its tumor suppressive potential in gastric cancer progression.  相似文献   

12.
13.
抗癌基因──p53和Rb基因甲基化的研究进展   总被引:1,自引:0,他引:1  
介绍p53和Rb基因甲基比研究的最新进展.CpG序列是DNA甲基化和基因突变的频发位点.p53和Rb基因的CpG序列易发生甲基化.其高度甲基化可能与基因功能失活有关,从而丧失抑制细胞增殖的功能,可能为肿瘤等发生的重要原因之一.  相似文献   

14.
In 1975, Holliday and Pugh as well as Riggs independently hypothesized that DNA methylation in eukaryotes could act as a hereditary regulation mechanism that influences gene expression and cell differentiation. Interest in the study of epigenetic processes has been inspired by their reversibility as well as their potentially preventable or treatable consequences. Recently, we have begun to understand that the features of DNA methylation are not the same for all cells.Major differences have been found between differentiated cells and stem cells.Methylation influences various pathologies, and it is very important to improve the understanding of the pathogenic mechanisms. Epigenetic modifications may take place throughout life and have been related to cancer, brain aging, memory disturbances, changes in synaptic plasticity, and neurodegenerative diseases,such as Parkinson's disease and Huntington's disease. DNA methylation also has a very important role in tumor biology. Many oncogenes are activated by mutations in carcinogenesis. However, many genes with tumor-suppressor functions are "silenced" by the methylation of CpG sites in some of their regions.Moreover, the role of epigenetic alterations has been demonstrated in neurological diseases. In neuronal precursors, many genes associated with development and differentiation are silenced by CpG methylation. In addition,recent studies show that DNA methylation can also influence diseases that do not appear to be related to the environment, such as IgA nephropathy, thus affecting,the expression of some genes involved in the T-cell receptor signaling. In conclusion, DNA methylation provides a whole series of fundamental information for the cell to regulate gene expression, including how and when the genes are read, and it does not depend on the DNA sequence.  相似文献   

15.
《Epigenetics》2013,8(2):128-133
“Mutations” in the pattern of CpG methylation imprinting of the human genome have been correlated with a number of diseases including cancer. In particular, aberrant imprinting of tumor suppressor genes by gain of CpG methylation has been observed in many cancers and thus represents an important alternative pathway to gene “mutation” and tumor progression. Inhibitors of DNA methylation display therapeutic effects in the treatment of certain cancers, and it has been assumed these effects are due to the reversal of “mutant” gene imprinting. However, significant reactivation of imprinted tumor suppressor genes is rarely observed in vivo following treatment with DNA methylation inhibitors. A recent study revealed an unexpected requirement for CpG methylation in the synthesis and assembly of the ribosome, an essential function for cell growth and proliferation. As such, the data provide an unforeseen explanation of the action of DNA methylation inhibitors in restricting cancer cell growth.  相似文献   

16.
The insulin-like growth factor-I (IGF-IR) and androgen (AR) receptors are important players in prostate cancer. Functional interactions between the IGF-I and androgen signaling pathways have crucial roles in the progression of prostate cancer from early to advanced stages. DNA methylation is a major epigenetic alteration affecting gene expression. Hypermethylation of tumor suppressor promoters is a frequent event in human cancer, leading to inactivation and repression of specific genes. The aim of the present study was to identify the entire set of methylated genes ("methylome") in a cellular model that replicates prostate cancer progression. The methylation profiles of the P69 (early stage, benign) and M12 (advanced stage, metastatic) prostate cancer cell lines were established by treating cells with the demethylating agent 5-aza-2'-deoxycytidine (5-Aza) followed by DNA microarray analysis. Comparative genome-wide methylation analyses of 5-Aza-treated versus untreated cells identified 297 genes overexpressed in P69 and 191 genes overexpressed in M12 cells. 102 genes were upregulated in both benign and metastatic cell lines. In addition, our analyses identified the PITX2 gene as a master regulator upstream of the AR and IGF-IR genes. The PITX2 promoter was semi-methylated in P69 cells but fully methylated (i. e., silenced) in M12 cells. Epigenetic regulation of PITX2 during the course of the disease may lead to orchestrated control of the AR and IGF signaling pathways. In summary, our results provide new insights into the epigenetic changes associated with progression of prostate cancer from an organ confined, androgen-sensitive disorder to an aggressive, androgen-insensitive disease.  相似文献   

17.
18.
Contamination of normal cells is almost always present in tumor samples and affects their molecular analyses. DNA methylation, a stable epigenetic modification, is cell type-dependent, and different between cancer and normal cells. Here, we aimed to demonstrate that DNA methylation can be used to estimate the fraction of cancer cells in a tumor DNA sample, using esophageal squamous cell carcinoma (ESCC) as an example. First, by an Infinium HumanMethylation450 BeadChip array, we isolated three genomic regions (TFAP2B, ARHGEF4, and RAPGEFL1) i) highly methylated in four ESCC cell lines, ii) hardly methylated in a pooled sample of non-cancerous mucosae, a pooled sample of normal esophageal mucosae, and peripheral leukocytes, and iii) frequently methylated in 28 ESCCs (TFAP2B, 24/28; ARHGEF4, 20/28; and RAPGEFL1, 19/28). Second, using eight pairs of cancer and non-cancer cell samples prepared by laser capture microdissection, we confirmed that at least one of the three regions was almost completely methylated in ESCC cells, and all the three regions were almost completely unmethylated in non-cancer cells. We also confirmed that DNA copy number alterations of the three regions in 15 ESCC samples were rare, and did not affect the estimation of the fraction of cancer cells. Then, the fraction of cancer cells in a tumor DNA sample was defined as the highest methylation level of the three regions, and we confirmed a high correlation between the fraction assessed by the DNA methylation fraction marker and the fraction assessed by a pathologist (r=0.85; p<0.001). Finally, we observed that, by correction of the cancer cell content, CpG islands in promoter regions of tumor-suppressor genes were almost completely methylated. These results demonstrate that DNA methylation can be used to estimate the fraction of cancer cells in a tumor DNA sample.  相似文献   

19.
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.  相似文献   

20.
SUMMARY: Gene copy number and DNA methylation alterations are key regulators of gene expression in cancer. Accordingly, genes that show simultaneous methylation, copy number and expression alterations are likely to have a key role in tumor progression. We have implemented a novel software package (CNAmet) for integrative analysis of high-throughput copy number, DNA methylation and gene expression data. To demonstrate the utility of CNAmet, we use copy number, DNA methylation and gene expression data from 50 glioblastoma multiforme and 188 ovarian cancer primary tumor samples. Our results reveal a synergistic effect of DNA methylation and copy number alterations on gene expression for several known oncogenes as well as novel candidate oncogenes. AVAILABILITY: CNAmet R-package and user guide are freely available under GNU General Public License at http://csbi.ltdk.helsinki.fi/CNAmet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号