首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilization of enzymes enhances their properties for efficient utilization in industrial processes. Magnetic nanoparticles, due to their high surface area, large surface-to-volume ratio and easy separation under external magnetic fields, are highly valued. Significant progress has been made to develop new catalytic systems that are immobilized onto magnetic nanocarriers. This review provides an overview of recent developments in enzyme immobilization and stabilization protocols using this technology. The current applications of immobilized enzymes based on magnetic nanoparticles are summarized and future growth prospects are discussed. Recommendations are also given for areas of future research.  相似文献   

2.
Yang  Tao  Sun  Shuguo  Ma  Meihu  Lin  Qinlu  Zhang  Lin  Li  Yan  Luo  Feijun 《Bioprocess and biosystems engineering》2015,38(10):2023-2034
Bioprocess and Biosystems Engineering - A simple optimization method of immobilization of avidin on magnetic nanoparticles (MNPs)’ surface was proposed in this study. The avidin-immobilized...  相似文献   

3.

Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  相似文献   

4.
The NiFe2O4 magnetic nanoparticles (NF‐MNPs) were prepared for one‐step selective affinity purification and immobilization of His‐tagged recombinant glucose dehydrogenase (GluDH). The prepared nanoparticles were characterized by a Fourier‐transform infrared spectrophotometer and microscopy. The immobilization and purification of His‐tagged GluDH on NF‐MNPs were investigated. The optimal immobilization conditions were obtained that mixed cell lysis and carriers in a ratio of 0.13 in pH 8.0 Tris‐HCl buffer at 30℃ and incubated for 2 h. The highest activity recovery and protein bindings were 71.39% and 38.50 μg mg–1 support, respectively. The immobilized GluDH exhibited high thermostability, pH‐stability and it can retain more than 65% of the initial enzyme after 10 cycles for the conversion of glucose to gluconolactone. Comparing with a commercial Ni‐NTA resin, the NF‐MNPs displayed a higher specific affinity with His‐tagged recombinant GluDH.  相似文献   

5.
Bioprocess and Biosystems Engineering - Magnetic biocatalysts offer enormous advantages over traditional ones. Their ability to be isolated by means of a magnet, in combination with their extensive...  相似文献   

6.
To obtain regenerable magnetic nanoparticles, triethoxy(3-isocyanatopropyl)silane and iminodiacetic acid (IZ) were used as the starting material and immobilized on Fe3O4 nanoparticles. Copper ions (Cu2+ ions) were loaded on the Fe-IZ nanoparticles and used for cellulase immobilization. The support was characterized by spectroscopic methods (FTIR, NMR) and thermogravimetric analysis, transmission electron microscopy, scanning electron microscope, X-ray diffraction, energy dispersive X-ray analysis, and vibrating sample magnetometer techniques. As a result of experiments, the amount of protein bound to immobilized cellulase (Fe-IZ-Cu-E) and cellulase activity was found to be 33.1 mg/g and 154 U/g at pH 5, 50°C, for 3 h. The results indicated that the free cellulase had kept only 50% of its activity after 2 h, while the Fe-IZ-Cu-E was observed to be around 77%, at 60°C. It was found that the immobilized cellulase maintained 93% of its initial catalytic activity after its sixth use. Furthermore, the Fe-IZ-Cu-E retained about 75% of its initial activity after 28 days of storage. To reuse the support material (Fe-IZ-Cu), it was regenerated by thorough washing with ammonia or imidazole.  相似文献   

7.
8.
Summary We report the novel use of magnetic particles isolated from magnetotactic bacteria. Magnetotactic bacteria were collected from enriched sludge by use of a magnetic harvesting apparatus. Magnetic particles separated from magnetotactic bacteria were shown to be pure magnetite. Glucose oxidase and uricase were immobilized on magnetic particles. The activity of glucose oxidase immobilized on biogenic magnetites was 40 times that immobilized on artificial magnetites or Zn-ferrite particles. Both glucose oxidase and uricase coupled with biogenic magnetic particles retained their activities when they were reused 5 times.  相似文献   

9.
Magnetic nanoparticles (MNPs) are attractive materials that serve as a support for enzyme immobilization and facilitate separations by applying an external magnetic field; this could facilitate the recycling of enzymes and broaden their applications in organic synthesis. Herein, we report the methods for the immobilization of water-soluble and membrane-bound enzymes, and the activity difference between free and immobilized enzymes is discussed. Sialyltransferase (PmST1, from Pasteurella multocida ) and cytidine monophosphate (CMP)-sialic acid synthetase (CSS, from Neisseria meningitides ) were chosen as water-soluble enzymes and expressed using an intein expression system. The enzymes were site-specifically and covalently immobilized on PEGylated-N-terminal cysteine MNPs through native chemical ligation (NCL). Increasing the length of the PEG linker between the enzyme and the MNP surface increased the activity of the immobilized enzymes relative to the free parent enzymes. In addition, the use of a fluorescent acceptor tag for PmST1 affected enzyme kinetics. In contrast, sialyltransferase from Neisseria gonorrheae (NgST, a membrane-bound enzyme) was modified with a biotin-labeled cysteine at the C-terminus using NCL, and the enzyme was then assembled on streptavidin-functionalized MNPs. Using a streptavidin-biotin interaction, it was possible to immobilize NgST on a solid support under mild ligation conditions, which prevented the enzyme from high-temperature decomposition and provided an approximately 2-fold increase in activity compared to other immobilization methods on MNPs. Finally, the ganglioside GM3-derivative (sialyl-lactose derivative) was synthesized in a one-pot system by combining the use of immobilized PmST1 and CSS. The enzymes retained 50% activity after being reused ten times. Furthermore, the results obtained using the one-pot two-immobilized-enzyme system demonstrated that it can be applied to large-scale reactions with acceptable yields and purity. These features make enzyme-immobilized MNPs applicable to organic synthesis.  相似文献   

10.
The possibility of increasing the effectiveness of antitumor drugs such as doxorubicin by preparing its complex with ultrafine magnetic iron oxide nanoparticles is considered. A method for binding doxorubicin molecules to magnetic nanoparticles via citric acid is proposed. The main magnetic properties of the obtained conjugates were studied by proton relaxometry and Mössbauer spectroscopy, while their cytotoxic activity was evaluated via spectrophotometric MTT assay in HeLa cells. It was shown that the conjugates of magnetite nanoparticles with doxorubicin are characterized by a high level of contrast in magnetic resonance imaging. The magnetic properties of doxorubicin-free and bound magnetite nanoparticles are mainly determined by the average size of nanoobjects and the phase composition and slightly depend on the composition of the stabilizing shell. The cytotoxic effect of the synthesized conjugates of magnetite nanoparticles with doxorubicin is higher than that of unbound doxorubicin. This makes it possible to increase the antitumor effect of doxorubicin and control the dynamics of its delivery in the form of a conjugate into the disease focus due to the magnetic contrast properties of nanoparticles.  相似文献   

11.
d-Amino acid oxidase from Rhodosporidium toruloides was immobilized onto glutaraldehyde-activated magnetic nanoparticles. Approximately four enzyme molecules were attached to one magnetic nanoparticle when the weight ratio of the enzyme to the support was 0.12. After immobilization, the T m was increased from 45°C of the free form to 55°C. In the presence of 20 mM H2O2, the immobilized form retained 93% of its activity after 5 h while the free form was completely inactivated after 3.5 h.  相似文献   

12.
Mesoporous silica nanoparticles (MSN) have emerged as an attractive class of drug delivery carriers for therapeutic agents. Herein, we explored the covalent immobilization of proteins into MSN to generate a stimulus-responsive controlled release system. First, MSN were functionalized with thiol groups using (mercaptopropyl)-trimethoxysilane (MPTMS). Functionalization was verified by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering. The model enzyme carbonic anhydrase (CA) was coupled to sulfosuccinimidyl 6-[3'(2-pyridyldithio)-propionamido]hexanoate (Sulfo-LC-SPDP) at a low ratio of 1:1 to prevent enzyme inactivation and subsequently covalently immobilized into MSN via thiol-disulfide interchange. The enzyme could be released from MSN with 10 mM glutathione, which represents intracellular redox conditions, while it remained bound to the MSN at extracellular redox conditions represented by 1 μM glutathione. The activity of the released enzyme was >80% demonstrating that the enzyme was still largely functional and active after immobilization and release. Human cervical cancer (HeLa) cells were incubated with the MSN-CA bioconjugates at various concentrations for 24 h and the data show good biocompatibility. In summary, we demonstrate the potential of MSN as drug delivery systems for proteins.  相似文献   

13.
Magnetic nanoparticles (MNPs) were synthesized and surface modified with (3-Aminopropyl)triethoxysilane (APTES). The alkaline proteinase (AP) was covalently immobilized on the APTES-modified MNPs through glutaraldehyde linkage. The resulting AP-loaded MNPs have an average size of 84 nm in aqueous solution, and a magnetization of 40 emu/g, endowing the immobilized enzyme with excellent magnetic responsively and dispersity. The maximum amount of AP and catalytic activity immobilized 1.0 mg MNPs was 120 μg and 25.3 units, respectively. Immobilized AP showed maximum activity at pH 10.0 and 50°C. Compared with free enzyme, the immobilized AP exhibited better storage stability. Moreover, immobilized AP can be reused 10 times and still maintained about 50% of its initial activity. The degree of hydrolysis of soy protein hydrolysates for immobilized AP could reach 19.0%, which was closer to the value of free enzyme. The molecular weight (M.W.) analysis showed that the soy protein was hydrolyzed successfully into small peptides of two main fractions with an average M.W. of 742 and 2126 Da. This study indicated that the immobilized AP could be used to hydrolyze continuously soy protein for potential industry application. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2756, 2019.  相似文献   

14.
Calcium carbonate nanoparticles (nano-CaCO3) may be a promising material for enzyme immobilization owing to their high biocompatibility, large specific surface area and their aggregation properties. This attractive material was exploited for the mild immobilization of glucose oxidase (GOD) in order to develop glucose amperometric biosensor. The GOD/nano-CaCO3-based sensor exhibited a marked improvement in thermal stability compared to other glucose biosensors based on inorganic host matrixes. Amperometric detection of glucose was evaluated by holding the modified electrode at 0.60 V (versus SCE) in order to oxidize the hydrogen peroxide generated by the enzymatic reaction. The biosensor exhibited a rapid response (6s), a low detection limit (0.1 microM), a wide linear range of 0.001-12 mM, a high sensitivity (58.1 mAcm-2M-1), as well as a good operational and storage stability. In addition, optimization of the biosensor construction, the effects of the applied potential as well as common interfering compounds on the amperometric response of the sensor were investigated and discussed herein.  相似文献   

15.
16.
Srinivasan B  Huang X 《Chirality》2008,20(3-4):265-277
A general method is introduced to immobilize organic molecules on magnetic nanoparticles through silanization reactions and determine the maximum loading level by UV-vis spectroscopy. Loading levels of 1.5 x 10(-3) mol per gram of nanoparticle were obtained with structurally diverse compounds such as rhodamine B and glucosamine. The length of the linker did not have a significant effect on loading as comparable maximum amounts of rhodamine B were immobilized on magnetic nanoparticles regardless of the linker length. Interestingly, rhodamine B derivatives lost conjugation during synthetic manipulations due to reversible spiroisobenzofuran formation. Full regeneration of conjugation was found to be slow with rhodamine B attached on magnetic nanoparticles. The results obtained from these studies will be useful for studying surface functionalization of MNPs in general.  相似文献   

17.
Fu J  Reinhold J  Woodbury NW 《PloS one》2011,6(4):e18692

Background

Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings

A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance

A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.  相似文献   

18.
酶的固定化技术最新研究进展   总被引:2,自引:0,他引:2  
酶是一种高效、绿色、应用广泛的生物催化剂,因其固定化形态在多种性质上均优于游离态,酶固定化技术应运而生并不断发展。我国固定化技术研究始于20世纪70年代,目前固定化酶在食品、医疗、能源、环境治理等领域得到了广泛的应用,但现有固定化技术仍存在适用范围小、成本较高等缺陷。因此,在较为成熟的传统固定化技术基础上,研究者们对新型固定化技术的研究与创新进行了大量尝试,形成了一批以固定化载体和固定化方式为核心的新型固定化技术。文中作者结合团队十余年对固定化技术的研究和理解,归纳介绍了新型酶固定化技术的发展方向和应用趋势,并阐述了对固定化技术未来发展的理解和建议。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号