首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of the sulfhydryl protease calotropin DI from the madar plant, Calotropis gigantea, has been determined at 3·2 Å resolution using the multiple isomorphous replacement method with five heavy atom derivatives. A Fourier synthesis based on protein phases with a mean figure of merit of 0·857 was used for model building. The polypeptide backbone of calotropin DI is folded to form two distinct lobes, one of which is comprised mainly of α-helices, while the other is characterized by a system of all antiparallel pleated sheets. The overall molecular architecture closely resembles those found in the sulfhydryl proteases papain and actinidin.Despite the unknown amino acid sequence of calotropin DI a number of residues around its active center could be identified. These amino acid side-chains were found in a similar arrangement as the corresponding ones in papain and actinidin. The polypeptide chain between residues 1 and 18 of calotropin DI folds in a unique manner, providing a possible explanation for the unusual inability of calotropin DI to hydrolyze those synthetic substrates that papain and actinidin act upon.  相似文献   

2.
An accurate three-dimensional structure is known for papain (1.65 A resolution) and actinidin (1.7 A). A detailed comparison of these two structures was performed to determine the effect of amino acid changes on the conformation. It appeared that, despite only 48% identity in their amino acid sequence, different crystallization conditions and different X-ray data collection techniques, their structures are surprisingly similar with a root-mean-square difference of 0.40 A between 76% of the main-chain atoms (differences less than 3 sigma). Insertions and deletions cause larger differences but they alter the conformation over a very limited range of two to three residues only. Conformations of identical side-chains are generally retained to the same extent as the main-chain conformation. If they do change, this is due to a modified local environment. Several examples are described. Spatial positions of hydrogen bonds are conserved to a greater extent than are the specific groups involved. The greatest structural similarity is found for the active site residues of papain and actinidin, for the internal water molecules and for the main-chain conformation of residues in alpha-helices and anti-parallel beta-sheet structure. This was reflected also in the similarity of the temperature factors. It suggests that the secondary structural elements form the skeleton of the molecule and that their interaction is the main factor in directing the fold of the polypeptide chain. Therefore, substitution of residues in the skeleton will, in general, have the most drastic effect on the conformation of the protein molecule. In papain and actinidin, some main-chain-side-chain hydrogen bonds are also strongly conserved and these may determine the folding of non-repetitive parts of the structure. Furthermore, we included primary structure information for three homologous thiol proteases: stem bromelain, and the cathepsins B and H. By combining the three-dimensional structural information for papain and actinidin with sequence homologies and identities, we conclude that the overall folding pattern of the polypeptide chain is grossly the same in all five proteases, and that they utilize the same catalytic mechanism.  相似文献   

3.
The structure of actinidin, a sulphydryl protease obtained from the fruit of Actinidia chinensis, has been determined from X-ray crystallographic data to a resolution of 5.5 Å. Three isomorphous heavy atom derivatives, prepared with uranyl acetate, dichloroethylenediamine platinum(II) and potassium iodomercurate(II), were used in the phase calculation, giving a mean figure of merit of 0.88. The molecule can be described as an oblate ellipsoid with approximate dimensions 50 Å × 40 Å × 36 Å, and consists of two globular units separated by a shallow cleft. Binding studies with mercuric chloride reveal two sites of attachment, both within this cleft, and although both sites are of low occupancy it is probable that one or other marks the position of the active sulphydryl group. Although the folding of the polypeptide chain of actinidin cannot be followed with certainty, it appears to be closely similar to that of papain, suggesting that these are members of a family of homologous proteins.  相似文献   

4.
The complete primary structure of the proteinase omega isolated from the latex of the Carica papaya fruits is given. The polypeptide chain contains 216 amino-acid residues, the alignment of which was deduced from sequence analyses of the native enzyme, the tryptic, chymotryptic, peptic and thermolysinolytic peptides and facilitated due to the considerable degree of homology with papain and actinidin. The location of the three disulfide bridges could be established with the help of peptic and thermolysinolytic fragments. Proteinase omega shares 148 identical amino-acid residues (68.5%) with papain and 108 ones (50%) with actinidin, including the three disulfide bridges and the free cysteine residue required for activity, as well as most of the other amino-acid residues involved in the catalytic mechanism and two thirds of the glycine residues which are of structural significance. The homology with other cysteine proteinases of different origin is discussed.  相似文献   

5.
6.
The three-dimensional structure of beef liver catalase has been determined to 2.5 å resolution by a combination of isomorphous and molecular replacement techniques. Heavy-atom positions were found using vector search and difference Fourier methods. The tetrameric catalase molecule has 222 symmetry with one of its dyads coincident with a crystallographic 2-fold axis. The known polypeptide sequence has been unambiguously fitted to the electron density map. The heme is well buried in a hydrophobic pocket, 20 Å below the surface of the molecule, and accessible through a hydrophobic channel. Residues that line the heme pocket belong to two different subunits. Tyr357 is the proximal heme ligand and the catalytically important residues on the distal side are residues His74 and Asnl47. The tertiary structure consists of four domains: an extended non-globular amino-terminal arm, which stabilizes the quaternary structure; an anti-parallel, eight-stranded β-barrel providing the residues on the distal side of the heme; a rather random “wrapping domain” around the subunit exterior including the proximal heme ligand; and a final λ-helical structure resembling the E, F, G and H helices of the globins.  相似文献   

7.
The structures of pig heart and chicken heart citrate synthase have been determined by multiple isomorphous replacement and restrained crystallographic refinement for two crystal forms, a tetragonal form at 2·7 Å and a monoclinic form at 1·7 Å resolution, with crystallographic R-values of 0·199 and 0·192, respectively. The structure determination involved a novel application of restrained crystallographic refinement, in that the refinement of incomplete models was necessary in order to completely determine the course of the polypeptide chain. The recently determined amino acid sequence (Bloxham et al., 1981) has been fitted to the models. The molecule has substantially different conformations in the two crystal forms, and there is evidence that a conformational change is required for enzymatic activity.The molecule is a dimer of identical subunits with 437 amino acid residues each. The conformation is all α-helix, with 40 helices per dimer packing tightly to form a globular molecule. Many of the helices are kinked in various ways or bent smoothly over a large angle. Several of the helices show an unusual antiparallel packing.Each subunit is clearly divided into a large and a small domain. The two crystal forms differ by the relative arrangement of the two domains. The tetragonal form represents an open configuration with a deep cleft between the two domains, the monoclinic form is closed. The structural change from the open to the closed form can be described by an 18 ° rotation of the small domain relative to the large domain.Crystallographic analyses were performed with the product citrate bound in both crystal forms, with coenzyme A (CoA) and a citryl-CoA analogue bound to the monoclinic form. These studies establish the CoA and the citrate binding sites, and the conformations of the two product molecules in atomic detail. The subunits are extensively interdigitated, with one subunit making significant contributions to both the citrate and the CoA binding sites of the other subunit. The adenine moiety of CoA is bound to the small domain, and the pantothenic arm is bound to the large domain. The citrate molecule is bound in a cleft between the large domain. The citrate molecule is bound in a cleft between the large and small domain, with the si carboxymethylene group facing the SH arm of coenzyme A. In the monoclinic form, the cysteamine part of CoA shields the bound citrate completely from the solution. Partial reaction of CoA-SH and aspartate 375 to form aspartyl-CoA, and citrate to form citryl-CoA may occur in the crystals. The conformation of CoA is compact, characterized by an internal hydrogen bond O-52 … N-7 and a tightlybound water molecule O-51 … HOH … O-20.  相似文献   

8.
The three-dimensional structure of quinoprotein methylamine dehydrogenase from Thiobacillus versutus has been determined at 2.25 A resolution by a combination of multiple isomorphous replacement, phase extension by solvent flattening and partial structure phasing using molecular dynamics refinement. In the resulting map, the polypeptide chain for both subunits could be followed and an X-ray sequence was established. The tetrameric enzyme, made up of two heavy (H) and two light (L) subunits, is a flat parallellepiped with overall dimensions of approximately 76 x 61 x 45 A. The H subunit, comprising 370 residues, is made up of two distinct segments: the first 31 residues form an extension which embraces one of the L subunits; the remaining residues are found in a disc-shaped domain. This domain is formed by a circular arrangement of seven topologically identical four-stranded antiparallel beta-sheets, with approximately 7-fold symmetry. In spite of distinct differences, this arrangement is reminiscent of the structure found in influenza virus neuraminidase. The L subunit consists of 121 residues, out of which 53 form a beta-sheet scaffold of a central three-stranded antiparallel sheet flanked by two shorter two-stranded antiparallel sheets. The remaining residues are found in segments of irregular structure. This subunit is stabilized by six disulphide bridges, plus two covalent bridges involving the quinone co-factor and residues 57 and 107 of this subunit. The active site is located in a channel at the interface region between the H and L subunits, and the electron density in this part of the molecule suggests that the co-factor of this enzyme is not pyrrolo quinoline quinone (PQQ) itself, but might be instead a precursor of PQQ.  相似文献   

9.
We report the chemically determined sequence of most of the polypeptide chain of the coat protein of tomato bushy stunt virus. Peptide locations have been determined by comparison with the high-resolution electron density map from X-ray crystallographic analysis as well as by conventional chemical overlaps. Three small gaps remain in the 387-residue sequence. Positively charged side-chains are concentrated in the N-terminal part of the polypeptide (the R domain) as well as on inward-facing surfaces of the S domain. There is homology of S-domain sequences with structurally corresponding residues in southern bean mosaic virus.  相似文献   

10.
The α-lytic protease was isolated from an extracellular filtrate of the soil microorganism Myxobacter 495. Trigonal crystals (space group, P3221) of this serine enzyme were grown from 1·3 m-Li2SO4 at pH 7·2. X-ray reflections from crystals of the native enzyme, comprising the 2·8 Å limiting sphere, were phased by the multiple isomorphous replacement technique. Five heavy-atom derivatives were used and the overall mean figure of merit 〈m?〉 is 0·83. The resulting native electron density map of α-lytic protease has been interpreted in conjunction with the published sequence (Olson et al., 1970) of 198 amino-acid residues.α-Lytic protease has a structural core similar to that of the pancreatic serine proteases (108 α-carbon atom positions are topologically equivalent (within 2·0 Å) to residues of porcine elastase) and its tertiary structure is even more closely related to the two other bacterial serine protease structures previously determined (James et al., 1978; Brayer et al., 1978b; Delbaere et al., 1979a). α-Lytic protease has the following distinctive features in common with the bacterial serine enzymes, Streptomyces griseus proteases A and B: an amino terminus that is exposed to solvent on the enzyme surface, a considerably shortened uranyl loop (residues 65 to 84), a major segment of polypeptide chain from the autolysis loop deleted (residues 144 to 155), a buried guanidinium group of Arg138 in an ion-pair bond with Asp194, and an altered conformation of the methionine loop (residues 168 to 182) relative to the pancreatic enzymes.At the present resolution, the members of the catalytic quartet (Ser214, Asp102, His57 and Ser195) adopt the conformation found in all members of the Gly-Asp-Ser-Gly-Gly serine protease family. The carboxylate of Asp102 is in a highly polar environment, as it is the recipient of four hydrogen bonds. The interaction between the Nε2 atom of the imidazole ring in His57 and Oγ atom of Ser195 is very weak (3·3 Å) and supports the concept that there is little, if any, enhanced nucleophilicity of the side-chain of Ser195 in the native enzyme.The molecular basis for the observed substrate specificity of α-lytic protease is clear from the distribution of amino acid side-chains in the neighborhood of the active site. An insertion of five residues at position 217, and the conformation of the side-chain of Met192 account for the fact that the specificity pocket can bind only small residues, such as Ala, Ser or Val.  相似文献   

11.
E Dufour 《Biochimie》1988,70(10):1335-1342
The comparison of the amino acid sequences of 5 cysteine proteinases: papain, actinidin, rat cathepsins B and H and chicken cathepsin L, demonstrates a striking homology among their sequences. The N-terminal region (residues 1-70 in papain) and C-terminal region (residues 118-212 in papain) display the highest sequence homologies, whereas the lowest sequence homologies are observed in the middle region (residues 71-117 in papain); a segment where most insertions/deletions are observed. The highest sequence homology is observed between rat cathepsin H and chicken cathepsin L. As shown by X-ray studies, papain and actinidin have a clearly defined double domain structure. Each domain contains a core of non-polar side chains, which are retained in cathepsins B, H and L, except for the non-polar residue 203 of the core which is replaced by glutamic acid in cathepsin B. The percentage and the location of alpha-helix and beta-sheets of cathepsins B, H and L, assessed using the methods of Garnier et al. (1978, J. Mol. Biol. 120, 97-120) and Chou and Fasman (1974, Biochemistry 13, 222-245), show that the main ordered structures in papain and actinidin are probably retained in cathepsins B, H and L. The differences observed occur essentially in the middle region, a place where sequences display the lowest homologies and which is far removed from the active site.  相似文献   

12.
The three-dimensional structure of class pi glutathione S-transferase from pig lung, a homodimeric enzyme, has been solved by multiple isomorphous replacement at 3 A resolution and preliminarily refined at 2.3 A resolution (R = 0.24). Each subunit (207 residues) is folded into two domains of different structure. Domain I (residues 1-74) consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side, facing the solvent, by a bent, irregular helix structure. The topological pattern resembles the bacteriophage T4 thioredoxin fold, in spite of their dissimilar sequences. Domain II (residues 81-207) contains five alpha-helices. The dimeric molecule is globular with dimensions of about 55 A x 52 A x 45 A. Between the subunits and along the local diad, is a large cavity which could possibly be involved in the transport of nonsubstrate ligands. The binding site of the competitive inhibitor, glutathione sulfonate, is located on domain I, and is part of a cleft formed between intrasubunit domains. Glutathione sulfonate is bound in an extended conformation through multiple interactions. Only three contact residues, namely Tyr7, Gln62 and Asp96 are conserved within the family of cytosolic glutathione S-transferases. The exact location of the binding site(s) of the electrophilic substrate is not clear. Catalytic models are discussed on the basis of the molecular structure.  相似文献   

13.
The thermal unfolding of papain was studied at pH 2.6 by means of circular dichroism and difference spectroscopy. The transition curves obtained from ellipticity changes at 208 and 220 nm were biphasic, i.e., they showed two distinct successive steps, demonstrating the existence of an intermediate state of stable secondary conformation in the denaturation process. Difference-spectroscopy studies indicated that considerable exposure of aromatic side-chains is involved in both steps of the transition. Since papain has two domains in its molecular structure, our results suggest that they unfold in a successive way and rather independently. Furthermore, the structural characteristics of the intermediate state, obtained from its circular dichroism spectrum in the far-ultraviolet region, seem to point out that the second domain (residues 111-212) is the most stable part of the molecule.  相似文献   

14.
The amino acid sequence of subunit A of the potato chymotryptic inhibitor I was determined. The sequence was deduced from analysis of fragments and peptides derived from the protein by cleavage with cyanogen bromide, N-bromosuccinimide and dilute acid, and by digestion with trypsin, thermolysin, pepsin and papain. The molecule consists of a single polypeptide chain of 84 residues, which contains two homologous regions each of 13 amino acids. The protein does not appear to be homologous with any other known proteinase inhibitors.  相似文献   

15.
Three isomorphous heavy-atom derivatives have been used to calculate a 2.5 Å resolution electron density map of tosyl-elastase at pH 5.0, from which an accurate atomic model has been constructed. Atomic co-ordinates measured from this model have been refined using model building, real-space refinement and energy minimization programs. The three-dimensional conformation of the polypeptide chain is described in terms of conformational angles, hydrogen-bonding networks and the environment of different types of amino acid side-chain.Difference Fourier calculation of the high resolution structure of native elastase at pH 5.0 shows it to be virtually identical to that of the tosyl derivative, except near the tosyl group. The conformation of the catalytically important residues in native elastase is very similar to that of native α-chymotrypsin, except for the orientation of the active centre serine oxygen. The significance of important structural similarities and differences between these two enzymes is discussed.Elastase contains 25 internal water molecules which play an important role in stabilizing the active conformation of the enzyme. Many of these water molecules are in identical positions to those found in the interior of α-chymotrypsin  相似文献   

16.
Specific chemical modifications of the tobacco mosaic virus coat protein lead to new heavy-atom derivatives. They can be used for the determination of phases in the isomorphous replacement method, but more important they are necessary as markers if one wants to trace the polypeptide chain through an electron density map of limited resolution (10 Å). In addition to the positions of two residues known from previous work, two more residues out of the 158 have now been located in three dimensions. The N-terminus is at the outside of the particle (r = 88 Å), and Lys-68 lies at a radius of 72 Å.  相似文献   

17.
Single crystal X-ray data were collected on film for the holoenzyme of lobster d-glyceraldehyde-3-phosphate dehydrogenase to 3·0 Å resolution. Films of potassium tetraiodomercurate, K2HgI4, comprising a complete low resolution set, with some additional high resolution terms, were given to us by Drs H. C. Watson and L. J. Banaszak. A 3·0 Å high resolution data set was collected of a p-chloromercuri-phenylsulfonate derivative. All these films were processed on a computer controlled Optronics film scanner. The K2HgI4 derivative difference Patterson was initially interpreted in terms of four single sites, one for each polypeptide chain, consistent with the previously determined molecular 222 symmetry. Single isomorphous replacement phases were then sufficient to identify other heavy atom sites. Least-squares refined parameters were used to give multiple isomorphous replacement phases at low resolution, and single isomorphous replacement phases at high resolution. The resultant electron density map was oriented along the molecular 2-fold axes and then averaged over all four equivalent subunits. This process produced a much improved electron density map, which could easily be interpreted in terms of a single polypeptide chain per subunit consistent with the known amino acid sequence. The use of non-crystallographic symmetry to improve the electron density map is equivalent to the molecular replacement method. A comparison is also made with other dehydrogenases.  相似文献   

18.
Glutathione reductase from human erythrocytes is a dimeric flavoenzyme with a molecular weight of 100,000. X-ray diffraction analysis using the isomorphous replacement technique with four heavy-atom derivatives yielded an electron density map at 6 Å resolution with a figure of merit of 0.88. Only minor cuts had to be made in the electron density map to isolate one molecule. The dimer interface is on a crystallographic 2-fold axis. Each subunit can be subdivided into three domains: I, II and III, which are aggregated in such a way that deep clefts are formed on opposite sides of the subunit. These clefts accommodate the substrate glutathione, binding to domain III, and the oxidized cofactor NADP, binding to domain I in a similar extended conformation as NAD binds to the dehydrogenases. The shortest connection between the centres of the nicotinamide ring of NADP and the cystine of oxidized glutathione is 18 Å long and goes along the interface between domains II and III right through the centre of the subunit. Presumably, FAD binds to domain II and its isoalloxazine ring bridges the gap between NADP and glutathione.  相似文献   

19.
δ-Haemolysin in mixed micelles with perdeuterated dodecylphosphocholine was investigated with two-dimensional proton nuclear magnetic resonance experiments at 500 MHz. A single set of resonance lines was observed for the micelle-bound polypeptide, indicating that δ-haemolysin adopts a single conformation in this environment. Nearly complete, sequence-specific assignments were obtained for the segment 5–23 of this 26 residue polypeptide chain. From the sequential connectivities and numerous medium-range nuclear Overhauser effects this central portion of the molecule was found to form an extended helix with pronounced amphipathic distribution of polar and nonpolar amino acid side-chains.  相似文献   

20.
The third domain of Japanese quail ovomucoid, a Kazal type inhibitor, has been crystallized and its crystal structure determined at 2.5 Å resolution using multiple isomorphous replacement techniques. The asymmetric unit contains four molecules. In the crystal the molecules are arranged in two slightly different octamers with approximate D4 symmetry. The molecules are held together mainly by interactions of the N-terminal residues, which form a novel secondary structural element, a β-channel.The molecule is globular with approximate dimensions 35 Å × 27 Å × 19 Å. The secondary structural elements are a double-stranded anti-parallel β-sheet of residues Pro22 to Gly32 and an α-helix from Asn33 to Ser44. The reactive site Lys18-Asp19 is located in an exposed loop. It is close to Asn33 at the N terminus of the helical segment. The polypeptide chain folding of ovomucoid bears some resemblance to other inhibitors in the existence of an anti-parallel double strand following the reactive site loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号