首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of piglet cardiac AMP deaminase were determined and its regulation by pH, phosphate, nucleotides and phosphorylation is described. AMP deaminase purified from the ventricles of newborn piglet hearts displayed hyperbolic kinetics with a Km of 2 mM for 5-AMP. The enzyme had a pH optimum of 7.0 and was strongly inhibited by inorganic phosphate. ATP decreased the Km of the native enzyme 3-fold, but did not significantly block the inhibitory effects of phosphate. Kinetic parameters were not significantly altered in the presence of adenosine, cyclic AMP and NAD+, whereas, the Km was decreased by 50% in the presence of NADH. Piglet cardiac AMP deaminase was phosphorylated by protein kinase C, resulting in a 2-fold increase in Vmax with no change in Km. However, incubation with cAMP-dependent protein kinase did not affect enzyme kinetics. The 80-85 kD protein subunit of piglet cardiac AMP deaminase immunoreacted with antisera raised against human erythrocyte AMP deaminase, rabbit heart AMP deaminase and human recombinant AMP deaminase 3 (isoform E). These results are discussed in relation to in situ AMP deaminase activity in neonatal piglet heart myocytes.  相似文献   

2.
Because mutation of AMP deaminase 1 gene leading to reduced AMP deaminase activity may result in protection of cardiac function in patients with heart disease, inhibitors of AMP deaminase (AMPD) may have therapeutic applications. This study evaluated the effect of a specific inhibitor of AMP deaminase 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol (AMPDI) on the isolated human enzyme and on nucleotide catabolism in rat cardiomyocytes. AMPDI effectively inhibited isolated human AMPD with an IC(50) = 0.5 micro M. AMPDI was much less effective with isolated cardiomyocytes (IC(50) = 0.5 mM). AMPDI is a very effective inhibitor of AMPD that despite lower efficiency in the cell system examined could be useful for in vivo studies.  相似文献   

3.
Because mutation of AMP deaminase 1 gene leading to reduced AMP deaminase activity may result in protection of cardiac function in patients with heart disease, inhibitors of AMP deaminase (AMPD) may have therapeutic applications. This study evaluated the effect of a specific inhibitor of AMP deaminase 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol (AMPDI) on the isolated human enzyme and on nucleotide catabolism in rat cardiomyocytes. AMPDI effectively inhibited isolated human AMPD with an IC 50 = 0.5 μ M. AMPDI was much less effective with isolated cardiomyocytes (IC 50 = 0.5 mM). AMPDI is a very effective inhibitor of AMPD that despite lower efficiency in the cell system examined could be useful for in vivo studies.  相似文献   

4.
5.
The specific activity of three characteristic enzymes, adenylate deaminase, adenylate kinase, and creatine kinase, in the skeletal muscles and heart of a variety of vertebrate land animals, including the human, are surveyed. Data from this study and available studies in the literature suggest that adenosine monophosphate deaminase in land vertebrates is quite high in white skeletal muscle, usually somewhat lower in red muscle, and 15-to 500-fold lower in cardiac muscle. Adenosine monophosphate deaminase is active primarily under ischemic or hypoxic conditions which occur frequently in white muscle, only occasionally in red muscle, and ought never occur in heart muscle, and this may therefore account for observed enzyme levels. The common North American toad, Bufo americanus, provides a striking exception to the rule with cardiac adenosine monophosphate deaminase as high as in mammalian skeletal muscle, whereas its skeletal muscle level of adenosine monophosphate deaminase is several times lower. The exceptional levels in the toad are not due to a change in substrate binding and are not accompanied by comparable change in the level of adenylate or creatine kinase. Nor do they signal any major change in isozyme composition, since a human muscle adenosine monophosphate deaminase-specific antiserum reacts with toad muscle adenosine monophosphate deaminase, but not with toad heart adenosine monophosphate deaminase. They do not represent any general anuran evolutionary strategy, since the bullfrog (Rana catesbeiana) and the giant tropic toad (Bufo marinus) have the usual vertebrate pattern of adenosine monophosphate deaminase distribution. Lower skeletal muscle activities in anurans may simply represent the contribution of tonic muscle fiber bundles containing low levels of adenosine monophosphate deaminase, but the explanation for the extremely high adenosine monophosphate deaminase levels in heart ventricular muscle is not apparent.Abbreviations AK adenylate kinase - AMP adenosine monophosphate - AMPD, AMP deaminase - CPK creatine (phospho)kinase - EHNA erythro-9-(2-hydroxy-3-nonyl)-adenine-HCl  相似文献   

6.
Phosphatidate bilayers composed of dilauroylphosphatidate, dimyristoylphosphatidate, dipalmitoylphosphatidate and dioleoylphosphatidate were prepared. Their interaction with AMP deaminase isolated from pig heart was investigated. Dioleoylphosphatidate bilayers were found to exert non-competitive inhibition on the AMP deaminase with a Ki of 15 x 10(-6) M. This inhibition is three orders of magnitude stronger than that exerted by orthophosphate. The phosphatidate species containing saturated fatty acids were either non-inhibitory or inhibited enzyme activity rather poorly. However, alkalinization of the medium from pH 6.5 to pH 7.9 led to the inhibition of pig heart AMP deaminase by dilauroylphosphatidate bilayers. This was accompanied by the fluidization of the saturated phosphatidate species, i.e. the lowering of their phase transition temperature in alkaline pH, as measured by light-scattering and fluorescence scans. The possible significance of these findings for the regulation of AMP deaminase activity in vivo by natural membranes is discussed.  相似文献   

7.
Adenylate deaminase (AMP deaminase, EC 3.5.4.6) of a high substrate specificity was purified from pig heart by chromatography on cellulose phosphate. The enzyme shows a co-operative binding of AMP [h (Hill coefficient) 2.35, with SO.5 (half-saturating substrate concentration) 5mM]. ATP and ADP act as positive effectors, lowering h to 1.55 and SO.5 to 1 mM. The addition of liposomes (phospholipid bilayers) to ATP-activated or ADP-activated enzyme causes a further shift of the h value to 1.04 and SO.5 to 0.5 mM. For ATP-activated enzyme the addition of liposomes increases Vmax. by about 100%, and for ADP-activated enzyme by 50%. Liposomes have no effect on the kinetics of AMP deaminase in the absence of ATP and ADP, and neither do they influence the inhibitory effect of orthophosphate on heart muscle AMP deaminase. Metabolic implications of these findings are discussed.  相似文献   

8.
AMP deaminase could be a potential target for treatment of heart disease but experimental evaluation of this concept is difficult due to limited availability of inhibitors with proven efficiency in biological systems. This study evaluated the effect of 3-[2-(3-carboxy-4-bromo-5,6,7,8-tetrahydronaphthyl)ethyl]-3,6,7,8-tetrahydroimidazo [4,5-d][1,3]diazepin-8-ol, an AMP deaminase inhibitor (AMPDI) on the pathways of nucleotide metabolism in perfused rat heart. We show that AMPDI at 0.3 mM concentration effectively inhibits AMP deaminase in this experimental model.  相似文献   

9.
AMP deaminase isoforms from human skeletal muscle can be separated chromatographically [Kaletha, Spychała & Nowak (1987) Experientia 43, 440-443]. In adult tissue nearly all the AMP deaminase activity was eluted from phosphocellulose with 0.75 M-KCl (''adult'' isoform), and the remaining activity could be eluted with 2.0 M-KCl. Conversely, most of the AMP deaminase activity from 11-week-old fetal tissue was eluted from phosphocellulose with 2.0 M-KCl (''fetal'' isoform). In the present paper the kinetic and regulatory properties of AMP deaminase extracted from 11- and 16-week-old fetal skeletal muscle are reported. The two isoforms from 11-week-old human fetus differed distinctly in these properties. The ''fetal'' isoform had about 5-fold higher half-saturation constant (S0.5) value than the ''adult'' form. It was also more sensitive to the influence of some important regulatory ligands (ADP, ATP and Pi), and exhibited a different pH/activity profile. The ''adult'' isoform of AMP deaminase from fetal muscle and the enzyme from mature muscle possessed similar kinetic and regulatory properties. This isoform seems not to be subject to any major modifications during further ontogenesis. This is not true, however, for the ''fetal'' isoform. In the muscle of 16-week-old human fetus, the ''fetal'' isoform showed a peculiar, biphasic, type of substrate-saturation kinetics. This phenomenon may reflect appearance of the next, developmentally programmed, isoform of human skeletal-muscle AMP deaminase.  相似文献   

10.
Interaction of AMP deaminase with RNA   总被引:1,自引:0,他引:1  
tRNA, 18 S and 28 S ribosomal RNAs were found to activate muscle AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) but inhibit liver and heart AMP deaminases. The macromolecular structures are essential for modulation of enzyme activity, since the effects of RNA disappeared after RNAase treatment. Sucrose density centrifugation experiments clearly demonstrated the binding of purified muscle AMP deaminase to tRNA, 18 S and 28 S RNAs. The binding is reversible and responsive to alterations of pH and KCl concentration. The binding was stable at pH 5.1-7.0 in 0.1 M KCl, but most of the enzyme dissociated at pH 7.5. KCl below 0.1 M concentration had no effect on dissociation of enzyme-RNA complex, but in 0.15 M KCl the complex was partially dissociated and in 0.2 M KCl most of the enzyme was released. Various nucleotides were also effective in dissociation of the enzyme from complex. The binding is saturable and the maximum number of muscle AMP deaminase molecules bound per mol 28 S RNA was calculated to be approx. 30. Liver and heart AMP deaminases were also found to interact with RNA.  相似文献   

11.
Adenylate deaminase activity was determined in cultured muscle cells of different maturation grades and muscle biopsies from normal subjects and four patients with a primary myoadenylate deaminase (MAD) deficiency. Adenylate deaminase activity was much lower in cultured human muscle cells than in normal muscle. The activity increased with maturation. The ratio of activities measured at 5 and 2 mM AMP decreased in the order: immature muscle cells greater than more mature muscle cells greater than muscle. Adenylate deaminase activity was detectable in muscle cell cultures of MAD-deficient patients. However, both at 2 and 5 mM AMP this activity was significantly lower than in cultured cells with the same high maturation grade obtained from control subjects, whereas the ratio between the activities at 5 and 2 mM AMP was higher. The observations indicate that transition from a fetal to an adult muscle isoenzyme of adenylate deaminase takes place in human cultured muscle cells during maturation. In cultures obtained from MAD-deficient patients this transition does not occur and only the fetal isoenzyme is present.  相似文献   

12.
AMP deaminase from normal and diabetic rat hearts was separated on cellulose phosphate and quantitated by HPLC. From soluble fractions three different AMP deaminase activities, according to KCl elution from cellulose phosphate and percent of total activity were: 170 mM (85%), 250 mM (8%) and 330 mM (7%) KCl. The AMP deaminase activity which eluted with 170 mM KCl was resolved to two distinct peaks by HPLC anionic exchange. After 4 weeks of diabetes the heart enzyme profile change to: 170 mM (10%), 250 mM (75%) and 330 mM (15%). Once purified the four activities were kinetically distinct: 170 mM KCl cytosolic, AMP Km = 1.78, stimulated by ATP, GTP, NADP and strongly inhibited by NAD; 170 mM KCl mitochondria AMP Km = 17.9, stimulated by ATP, ADP; 250 mM KCl isozyme, AMP Km = 0.66, stimulated by ADP; and 330 mM KCl isozyme, AMP Km = 0.97, inhibited by ATP, NAD(P).  相似文献   

13.
AMP deaminase from sheep brain was purified to homogeneity on SDS-PAGE and its general properties were investigated. The native enzyme has a molecular weight of approximately 350,000 as estimated by gel filtration and it is composed of four identical subunits with a molecular weight of 85,000 each. The purified enzyme had a specific activity of 500 units/mg protein and shows a sigmoid-shaped AMP saturation curve in the presence of 100 mM KCl. This deaminase is strongly activated by ATP and inhibited by GTP. It slightly catalyzes the hydrolysis of adenosine monosulfate (AMS), dAMP, and adenosine phosphoramidate (APA). These catalytic properties resemble those of AMP deaminase from human liver.  相似文献   

14.
A new simple enzymatic method for measuring AMP content in freeze-clamped rat heart is presented. The method is based on the ammonia estimation after the deamination of 5'-AMP by muscle 5'-adenylic acid deaminase. The minimum detectable amount of AMP was about 1.5 nmol. The recovery of AMP added to the tissue homogenate was 94%. The variance coefficient evaluated by assaying five samples from one tissue extract was equal to 5%. AMP content of rat heart (0.28 mumol/g wet tissue) is comparable with the values reported by others.  相似文献   

15.
The activity of adenylate deaminase, adenylate phosphatase and adenosine deaminase, as well as the endogenous content of adenine nucleotides, was examined in the heart of ageing chickens. In new-born (1-day-old) and young (20-day-old) chickens, AMP degradation in the heart seems to proceed preferentially through deamination, while in adult (1-year-old) through dephosphorylation. Compared with the adult heart, a 2-year-old one exhibits a decline of AMP catabolism. The total adenine nucleotide content and the concentration of ATP are higher in adult and aged chicken hearts, than in new-born and young ones. Adaptive mechanisms might occur in the heart of ageing chickens to ensure an adequate availability of adenine nucleotides.  相似文献   

16.
17.
AMP deaminase was completely solubilized from rat skeletal muscle with 50 mM Tris-HCl buffer (pH 7.0) containing KCl at a concentration of 0.3 M or more. The purified enzyme was found to be bound to rat muscle myosin or actomyosin, but not to F-actin at KCl concentrations of less than 0.3 M. Kinetic analysis indicated that 1 mol of AMP deaminase was bound to 3 mol of myosin and that the dissociation constant (Kd) of this binding was 0.06 micrometer. It was also shown that AMP deaminase from muscle interacted mainly with the light meromyosin portion of the myosin molecule. This finding differs from that of Ashby and coworkers on rabbit muscle AMP deaminase, probably due to a difference in the properties of rat and rabbit muscle AMP deaminase. AMP deaminase isozymes from rat liver, kidney and cardiac muscle did not interact with rat muscle myosin. The physiological significance of this binding of AMP deaminase to myosin is discussed.  相似文献   

18.
The kinetic and regulatory properties of purified pigeon heart muscle AMP deaminase were investigated. In the presence of 100 mM potassium chloride, the enzyme exhibited a slightly sigmoidal type of kinetics. Addition of ATP to the incubation medium changed the reaction rate versus substrate concentration plot into a hyperbolic one, and caused a decrease of the half-saturation constant (S0.5). ADP presence caused the change of both the S0.5 and Vmax parameters, exerting either an activating or inhibitory effect, depending upon the substrate concentration. Orthophosphate inhibited the enzyme at all substrate concentrations, increasing the value of the S0.5 parameter. In the presence of ATP, ADP and orthophosphate, added to the incubation medium at approximately physiological concentrations, pigeon heart AMP deaminase still seems to preserve its activated form. Active long chain fatty acids clearly inhibited enzyme activity even at micromolar concentrations. Interpretation of the kinetic data in terms of the allosteric theory of Monod et al. (1965, J. Mol. Biol. 12, 88-118) indicates that heart muscle AMP deaminase may operate as a functionally active dimer.  相似文献   

19.
In skeletal muscle, adenosine monophosphate (AMP) is mainly deaminated by AMP deaminase. However, the C34T mutation in the AMPD1 gene severely reduces AMP deaminase activity. Alternatively, intracellular AMP is dephosphorylated to adenosine via cytosolic AMP 5'-nucleotidase (cN-I). In individuals with a homozygous C34T mutation, cN-I might be a more important pathway for AMP removal. We determined activities of AMP deaminase, cN-I, total cytosolic 5'-nucleotidase (total cN), ecto-5'-nucleotidase (ectoN) and whole homogenate 5'-nucleotidase activity in skeletal muscle biopsies from patients with different AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57+/-22% of whole homogenate 5'-nucleotidase activity and was not significantly different from the other groups. A weak inverse correlation was found between AMP deaminase and cN-I activities (r2=0.18, p<0.01). There were no significant differences between different groups in the activities of cN-I, whole homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate availability of AMP.  相似文献   

20.
1. Phosphocellulose column chromatography under double gradient conditions (phosphate and KCl) revealed two forms of AMP deaminase in rat heart and brain and a single form in the liver and skeletal muscle. 2. Kinetically all purified AMP deaminases were classified into two categories: those, which elute from the column at lower KCl and Pi concentrations, display low S0.5 value are only moderately affected by MgATP, MgGTP and Pi; and those which elute at higher KCl and Pi concentrations, display high S0.5 values and are strongly regulated by allosteric effectors. 3. Physiological significance of the occurrence of two kinetic forms of AMP deaminase in some tissues is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号