首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The irreversible inhibitor of chymotrypsin-like serine proteases, N-tosyl –L-phenylalanine chloromethylketone (TPCK), was shown to prevent internucleosomal DNA cleavage caused by inducers of apoptosis. The pro-apoptotic properties of TPCK have been studied less thoroughly. The aim of the present study was to investigate the pro- and anti-apoptotic activities of TPCK on HL-60 cells and compare them with the actions of the mitochondrial electron transport inhibitor antimycin A (AMA). The results showed that TPCK alone caused activation of cell cycle checkpoints, mitochondrial cytochrome c release, caspase-3 activation, and chromatin condensation. Caspase-8 was not required for cytochrome c release but was crucial to caspase-3 activation. TPCK synergistically enhanced AMA-induced cytochrome c release and caspase-3 activation while completely blocking AMA-induced internucleosomal DNA fragmentation for at least 8 hours. Rather than blocking AMA-induced DNA fragmentation, the general serine protease inhibitor 4-(2-aminoethyl)-benzenesulphonyl fluoride (AEBSF) actually enhanced it. The pro-apoptotic effect of TPCK may be due to activation of cell cycle checkpoints via inhibition of the proteasome. The apoptotic pathways activated by TPCK and AMA probably converge at the level of the mitochondria. The mode by which TPCK prevents internucleosomal DNA fragmentation is probably not through serine protease inhibition.  相似文献   

2.
Serine protease inhibitors N-alpha-tosyl-L-lysinyl-chloromethylketone (TLCK) and N-tosyl-L-phenylalaninyl-chloromethylketone (TPCK) exhibit multiple effects on cell death pathways in mammalian cells. Thus, they are able to induce apoptosis by itself or promote cell death induced by other cytotoxic stimuli [King et al., 2004; Murn et al., 2004]. On the other hand, TLCK and TPCK were reported to prevent apoptosis by inhibiting the processing of caspases in response to some cell death inducing stimuli [Stefanis et al., 1997; Jones et al., 1998]. We observed that the pretreatment of HL-60 cells with TLCK or TPCK diminished caspases 3 and -7 (DEVDase) and caspase-6 (VEIDase) activity in response to various cell death inducing stimuli such as staurosporine (STS), etoposide (ETP), or N6-(2-isopentenyl)adenosine. In addition, TLCK but not TPCK inhibited collapse of mitochondrial transmembrane potential Delta Psi m (delta psi) in dying HL-60 cells. Such effects used to be considered as protective, however, the protection was only presumable since neither TLCK nor TPCK actually prevented cells from death. Our results further indicated that serine protease inhibitors TLCK and particularly TPCK acted as efficient direct inhibitors of mature caspases. Indeed, experiments with human recombinant caspases provided unequivocal evidence that TLCK and TPCK are very potent but non-specific inhibitors of activated caspases, namely caspases 3, -6, and -7. Interestingly, TPCK exhibited similar efficiency towards human recombinant caspases to that found for panspecific caspase inhibitor Boc-D-CMK. Such properties of TLCK and TPCK, previously considered as specific inhibitors of serine proteases, might offer novel consistent explanation for several protective or protective-like effects on apoptotic cells.  相似文献   

3.
Several chymotryptic-type protease inhibitors were found to inhibit both anti-CD3 mAb- and PHA-induced rise in Ca2+ and IL-2 production in Jurkat T cells. The magnitude of inhibition was a function of the effectors used to stimulate Ca2+ entry and depended on the concentration of the inhibitors. Neither tryptic-type protease inhibitors nor an elastase substrate prevented anti-CD3 mAb- or PHA-induced Ca2+ rise in Jurkat cells. The inhibitory effect of N-alpha-p-tosyl-L-phenylalanine chloromethyl-ketone on anti-CD3 mAb- and PHA-induced rise in Ca2+ resulted from a rapid increase in Ca2+ efflux. The inhibitors which were effective on Ca2+ mobilization also inhibited IL-2 production initiated by an anti-CD3 mAb in the presence of 12-O-tetradecanoylphorbol-13-acetate, and to a lesser extent by PHA or the calcium ionophore A23187. No inhibition of IL-2 production was observed when tryptic-type protease inhibitors or the elastase inhibitor were used. In addition, membrane preparations from Jurkat cells were found to hydrolyze the chymotryptic substrate Suc-Ala-Ala-Phe-paranitroaniline, an effect markedly inhibited by N-alpha-p-tosyl-L-phenylalanine chloromethylketone. Moreover, this inhibitor protected one potential endogenous substrate (Mr 38 kDa) from proteolysis. Taken together, these observations show that chymotryptic-type protease inhibitors block the responses generated by the binding of anti-CD3 mAb to Jurkat cells, and suggest that a chymotryptic-like membrane protease contributes to T cell activation.  相似文献   

4.
It has been shown that serine proteases are involved in aldosterone and 18-hydroxycorticosterone production by the rat adrenal zona glomerulosa in response to a variety of stimulants. From evidence presented for various tissues, including the rat adrenal cortex, the observation that adenylate cyclase can be activated by proteolytic enzymes and inhibited by protease inhibitors has led to the suggestion that serine proteases may also be involved in the hormonal stimulation of adenylate cyclase. In studies designed to test this hypothesis using protease inhibitors, only high concentrations (greater than 10(-4) M) of TAME (p-tosyl-L-arginine methyl ester) inhibited ACTH stimulated steroid and cAMP production in rat adrenal glomerulosa cells. TPCK (tosyl-L-phenylalanine chloromethylketone) and TLCK (tosyl-L-lysine chloromethylketone) were found to have a similar effect at very high concentrations (10(-2) M) but had no effect at the serine protease inhibitory concentration of 5 X 10(-6) M. Other protease inhibitors tested had no effect on ACTH-stimulated cAMP but the inhibitory effect of high concentrations of protease inhibitors on ACTH-stimulated adenylate cyclase was duplicated by the polyanion dextran sulphate. The results suggest that the inhibitors act through non-specific membrane effects and that proteases are not involved in the activation of zona glomerulosa adenylate cyclase by ACTH. In view of these findings it is concluded that a more rigorous approach should be applied to the use of protease inhibitors in whole cell systems, and that the concept of hormonal activation of adenylate cyclase via proteolytic events, which is based on studies with such inhibitors, should be reconsidered.  相似文献   

5.
Plasmodium berghei: The effect of five protease inhibitors, TPCK, TLCK, PMSF, leupeptin, and 1,10-phenanthroline on in vitro gametogenesis and early zygote development of P. berghei was investigated. PMSF and leupeptin showed no effect. Cysteine/serine protease inhibitors TPCK/TLCK at concentrations of 75 and 100 microM were effective on inhibiting exflagellation center formation, and this effect was reversible with the addition of l-cysteine. Exflagellation center formation was most effectively blocked by 1,10-phenanthroline (1mM), and exflagellation center numbers were restored by the addition of Zn(2+). A reduction of ookinete production was observed when TPCK/TLCK (100 microM) was added at 2h after gametogenesis, but no effect was observed with 1,10-phenanthroline (1mM). Our results suggest that proteolysis is important in both gametocyte activation and sexual development of P. berghei.  相似文献   

6.
X-irradiation and the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) act in a synergistic manner to increase the yield of transformed C3H10T1/2 cells in vitro. TPA modulated both translocation from the cytosol to the plasma membrane, and down regulation of protein kinase C (PKC) after prolonged (48 h) TPA exposure. N-tosyl-L-phenylalanine chloromethyl ketone (TPCK), antipain, and soybean-derived Bowman-Birk inhibitor, protease inhibitors that suppress transformation of C3H10T1/2 cells, had no effect on these TPA-mediated alterations of PKC activity, suggesting that protease inhibitors suppress TPA-stimulated promotion in vitro via a PKC-independent pathway. Several experiments were performed to determine whether non-toxic concentrations of the PKC inhibitors, N-p-tosyl-L-lysine chloromethyl ketone (TLCK), TPCK, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), or 1-(5-isoquinoline-sulfonyl)-2-methyl-piperazine (H-7), modulated the movement of cells from a quiescent state into the cell cycle. TPCK and the combination of H-7 and W-7 lowered DNA synthesis when cells were stimulated to divide by TPA. Because other protease inhibitors that slow transformation in vitro did not have the same suppressive effect on DNA synthesis, the inhibitory pathway that suppresses carcinogenic activity is likely to be different from the suppression of DNA synthesis.  相似文献   

7.
The effect of N alpha-tosyl-L-lysine chloromethylketone (TLCK), an inhibitor of trypsin-type proteases, on luteinizing hormone (LH)-induced and spontaneous meiotic maturation and follicular production of cAMP in mice was determined. When follicle-enclosed mouse oocytes were incubated with LH (1 micron/ml), they underwent the breakdown of the germinal vesicle (GVBD). TLCK (0.02-0.5 mM) inhibited LH-induced GVBD in folliculated oocytes. The concentration (0.5 mM) of TLCK that inhibited LH-induced GVBD did not significantly suppress LH-induced cAMP production by follicle cells. The effect of TLCK on spontaneous maturation in cumulus cell-enclosed and denuded oocytes was also determined. TLCK strongly inhibited spontaneous maturation in denuded oocytes only if it was added to the incubation medium for 1-3 h before oocytes were liberated from the follicular tissue. The inhibition of oocyte maturation by TLCK was significantly greater in cumulus cell-enclosed oocytes than in denuded oocytes, either with or without preincubation with TLCK. These results suggest that trypsin-type protease in oocytes participates in the process of meiotic maturation in mouse oocytes.  相似文献   

8.
N Richert  P J Davies  G Jay  I Pastan 《Cell》1979,18(2):369-374
We find that the protease inhibitor N-α-tosyl-L-lysyl chloromethyl ketone (TLCK) inhibits the transformation-specific kinase activity (Collett and Erikson, 1978) associated with p60src, the avian sarcoma virus (ASV) gene product responsible for the transformation of fibroblasts. TLCK has been shown to induce the phenotypic reversion of ASV-transformed cells to normal (Weber, 1975). Kinase activity was measured in extracts of chick embryo fibroblasts (CEF) transformed by the Schmidt-Ruppin strain of ASV (SR-ASV) with antiserum from rabbits bearing ASV-induced tumors. The immunoprecipitates were incubated with γ-32P-ATP under conditions in which the phosphorylation of the IgG heavy chain in the immunoprecipitate was directly proportional to the concentration of cell extract. When ASV-transformed CEF were treated with 0.1 mM TLCK, the kinase activity was reduced by 60% after 2 hr and by 80% after 6 hr, and continued to remain low for up to 40 hr when TLCK was present. When TLCK was removed, the kinase activity rose slowly over a period of many hours, suggesting that the enzyme is irreversibly inactivated by TLCK and new enzyme must be synthesized. The effect of TLCK in vivo is concentration-dependent and specific. Other serine protease inhibitors had no effect on kinase activity. At low concentrations (0.03 mM), TPCK produced partial inhibition (≤20%), but at higher concentrations TPCK was extremely toxic to the cells and therefore could not be tested. The inhibition by TLCK was not due to its ability to inhibit protein synthesis since cycloheximide treatment (1 μg/ml) did not significantly reduce kinase activity. TLCK also inhibited kinase activity when added directly to cell extracts, but about 5 times higher concentrations of TLCK were required to produce 50% inhibition. Under these conditions both TLCK and TPCK were comparable inhibitors, whereas PMSF had no effect. Our finding that the inhibition of the kinase by TLCK in vivo parallels the reversion of cell morphology to normal suggests that the kinase has an important role in transformation and offers a biochemical rationale for treatment of tumors with this agent.  相似文献   

9.
The effect of protease inhibitors and substrates on the killing of tumor cells by in vitro activated macrophages was examined. Phenylmethylsulfonyl fluoride, a serine esterase inhibitor, and the active site titrants TPCK and TLCK (chloromethyl ketone derivatives of tosyl-l-phenylalanine and tosyl-l-lysine) inhibited macrophage-mediated cytotoxicity in a dose-dependent and irreversible fashion. The synthetic protease substrates, tosyl-lysine methyl ester and tosyl-arginine methyl ester and the natural esterase inhibitors soybean trypsin inhibitor and antithrombin III had no effect. These results suggest that an activated macrophage-associated esterase may play a modulating role in the cytolytic interaction between activated macrophages and tumor cells.  相似文献   

10.
Protease inhibitors affecting the activity of the proteasome were reported to induce programmed cell death (apoptosis) in some mammalian cell lines. Proteasome activity can be suppressed by specific peptide derivatives and by N‐tosyl‐lysine‐chloromethyl‐ketone (TLCK) and N‐tosyl‐phenylalanine‐chloromethyl‐ketone (TPCK), which affect the trypsine‐ and chymotrypsine‐like activities of the proteasome, respectively. Particularly TLCK and TPCK caused necrotic cell death in the unicellular green alga Chlamydomonas reinhardtii. As a control, the effects of these protease inhibitors on the survival of human WISH cells were also studied. Bleaching of the Chlamydomonas cells after addition of TLCK or TPCK indicated that reactive oxygen species (ROS) were involved in this process. Indeed, increased levels of ROS were detected in Chlamydomonas cells treated with TLCK or TPCK. Furthermore, cell death induced by these protease inhibitors was accelerated by illumination and prevented or slowed down by scavengers of ROS.  相似文献   

11.
The production of [14C]proline-labeled collagen by embryonic chick tendon cells in suspension culture is reduced when the cells are incubated in the presence of lysosomotropic agents NH4Cl or chloroquine. Since these agents have multiple effects on fibroblasts, including inhibition of collagen secretion, specific proteinase inhibitors were tested for their effect on collagen production. Here the proteinase inhibitors N-p-tosyl-L-lysine chloromethylketone (TLCK) and leupeptin, specific for certain cysteine and serine proteinases, and pepstatin A, specific for aspartic proteinases, were tested for their effects on both the production and secretion of collagen. When treated with the proteinase inhibitor TLCK, the percentage of protein synthesis devoted to collagen decreased from control levels of 19.0 +/- 1.4% to 10.5 +/- 2.4% with 10 microM TLCK. Collagen synthesis was further reduced to only 1.2% of total protein synthesis with 100 microM TLCK. The incorporation of [14C]proline into collagenase-digestible peptides was only slightly decreased in the samples treated separately with 50 micrograms/ml leupeptin or 60 micrograms/ml pepstatin A. However, the production of collagen was reduced to 10.9 +/- 1.4% of total protein synthesis in samples treated with leupeptin and pepstatin A together. The basal intracellular degradation of newly synthesized, [14C]proline-labeled collagen was not significantly altered by any of the reagents tested, and secretion of the collagen which was produced was not impaired except in samples treated with 100 microM TLCK. The data presented are consistent with the hypothesis that a proteolytic mechanism utilizing some combination of cysteine, serine, and aspartic proteinases is necessary for continued collagen synthesis in freshly isolated embryonic chick tendon fibroblasts, and suggests that a heretofore unknown regulatory system may be operative in controlling the synthesis of collagen in fibroblasts.  相似文献   

12.
Epithelial cells are the first cells that encounter infecting bacteria and, as such, they have developed several mechanisms for microbial protection. We have shown previously that bladder epithelial cells express the lipopolysaccharide (LPS) receptor Toll-like receptor (TLR) 4 that enables a rapid cellular interleukin (IL)-8 response when exposed to Escherichia coli and LPS. TLR4 belongs to a family of receptors that was initially identified in Drosophila, in which Toll is required for the immune response against fungi. Fungal exposure activates a series of serine proteases that process the protein Spaetzle to a cytokine-like form that acts as a ligand for Toll. Here, we investigated whether a similar proteolytic cascade is required for human TLR activation. When screening a set of 18 protease inhibitors, three serine protease inhibitors (TPCK, TLCK and Pefabloc) were shown to inhibit LPS- and peptidoglycan-induced IL-8 production in TLR2- and TLR4-positive bladder epithelial cells. However, they were equally effective inhibitors of IL-1beta-induced signalling, indicating that their target(s) is/are located downstream of the TLRs. Further characterization showed that these inhibitors blocked I kappa B degradation but not phosphorylation in LPS-stimulated cells, which suggests that the serine protease inhibitors target the 26S proteasome. Identical results were obtained on LPS-stimulated monocytes. Based on these data, we find no evidence for the involvement of proteases upstream of TLRs in either epithelial cells or cells of the monocytic lineage.  相似文献   

13.
Particulate fractions prepared from spinach leaves by differentialcentrifugation were analyzed for proteins capable of bindingdi-isopropyl phosphorofluoridate (DFP); [3H]-labeled DFP andSDS-polyacrylamide gel electrophoresis were used. The chloroplast-richfraction contained one kind of DFP-binding protein, whose bindingwas inhibited by phenylmethylsulfonyl fluoride (PMSF). The mitochondrion-richfraction contained another DFP-binding protein, whose bindingwas sensitive to PMSF and L-1-tosylamide-2-phenylethyl chloromethylketone (TPCK). The microsome-rich fraction contained three PMSF-sensitiveDFP-binding proteins; one was sensitive to both Np-tosyl-L-lysinechloromethyl ketone (TLCK) and TPCK, one was sensitive to TLCKand one to TPCK. These DFP-binding proteins are believed tobe serine proteases. (Received April 30, 1983; Accepted October 17, 1983)  相似文献   

14.
Summary We have shown that depletion of monocytes from human peripheral blood mononuclear cells (PBMC) byl-phenylalanine methyl ester (PheOMe) enhanced lymphokine-activated killer cell (LAK) generation by recombinant interleukin-2 (rIL-2) at high cell density. In this study, we have investigated the mechanism of action of PheOMe on LAK activation by using trypsin, chymotrypsin, tosylphenylalaninechloromethanol (TPCK, a chymotrypsin inhibitor), tosyl-l-lysinechloromethane (TLCK, a trypsin inhibitor), phenylalaninol (PheOH), and benzamidine. PBMC were treated with 1–5 mM PheOMe for 40 min at room temperature in combination with the various agents, washed and assessed for their effects on natural killer (NK) activity against K562 cells and monocyte depletion. The treated cells were then cultured with or without rIL-2 for 3 days. LAK cytotoxicity was assayed against51Cr-labeled K562 and Raji tumor target cells. TPCK at 10 µg/ml partially inhibited depletion of monocytes by PheOMe. TLCK did not prevent depletion of monocytes nor inhibition of NK activity induced by PheOMe. TPCK and TLCK inhibited NK activity by themselves. TPCK but not TLCK inhibited rIL-2 induction of LAK cells. On the other hand, PheOH and benzamidine (analogs of PheOMe) lacked any effect on monocyte depletion but abrogated the inhibitory effect of PheOMe on NK activity. They had no effect on rIL-2 activation of LAK activity enhanced by PheOMe. Trypsin potentiated the inhibitory effect of PheOMe on NK activity and monocyte depletion. Trypsin partially inhibited IL-2 activation of LAK activity enhanced by PheOMe. Chymotrypsin had little effect on NK activity but prevented the inhibitory effect of PheOMe on NK activity. It had little effect on monocyte depletion induced by PheOMe. PheOMe was hydrolysed by monocytes and chymotrypsin to Phe and methanol as determined by HPLC. TPCK inhibited hydrolysis of PheOMe by monocytes. Our data suggest that the effects of PheOMe on monocytes, NK cells and LAK activation involve protease activities of monocytes.  相似文献   

15.
A search for alternative sterilants in parasitic fish encouraged us to explore the usefulness of proteinase inhibitors for this purpose. Fertilization in sea lamprey species (Petromyzon marinus L.) was inhibited by chymotrypsin and trypsin inhibitors 4'-acetamidophenyl 4-guanidinobenzoate (AGB), chymostatin, tosyl-L-lysine chloromethyl ketone (TLCK), and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) when these substances were added into a fertilization medium at the time of fertilization. Preincubation of eggs before fertilization with 100 microM TPCK, but not TLCK, resulted in inhibition of fertilization. Conversely, preincubation of spermatozoa with TLCK, but not TPCK, produced inhibition of fertilization. These data suggest the involvement of the chymotrypsin-like activity of eggs and trypsin-like activity of spermatozoa in fertilization. However, enzymes present in sperm suspensions were able to hydrolyze a chymotrypsin substrate N-glutaryl-L-phenylalanine-p-nitroanilide (GPNA) but not trypsin substrate N-alpha-benzoyl-DL-arginine-p-nitroanilide (BAPNA). The nature of this activity can be characterized as serine protease and our results indicate the involvement of serine proteinases in the fertilization of sea lamprey.  相似文献   

16.
Pretreatment with Actinomycin D (ActD, 1 microgram/ml for 3 hr) rendered WEHI 164 tumor cells susceptible to killing by human monocytes in a 6-hr 51Cr release assay. The present study was designed to elucidate the role of reactive oxygen intermediates (ROI) and of proteolytic enzymes in this reactivity. ActD-treated WEHI 164 cells did not trigger any measurable release of O-2 or H2O2 from monocytes. Monocytes exposed to phorbol-12-myristate-13-acetate, which enhanced release of ROI, did not show augmented killing of ActD-treated tumor cells. Scavengers of oxygen metabolites (catalase, superoxide dismutase, gluthatione, and mannitol), which inhibited ROI-mediated PMA-induced monocyte cytotoxicity against erythrocytes, did not affect monocyte killing of ActD-treated WEHI 164 cells. Enzymatically generated ROI with xanthine/xanthine-oxidase glucose/glucose-oxidase did not show preferential killing of ActD-treated WEHI 164 cells. Two patients with chronic granulomatous disease had normal levels of monocyte cytotoxicity against ActD-treated tumor cells. To determine the possible role of proteolytic enzymes in mediating this reactivity, we studied various antiproteases. Organophosphorous agents (DFP and PMSF), chloromethyl-ketone derivatives of tosylamino acids (TLCK and TPCK), Actinomyces products (pepstatin and chymostatin), and the synthetic protease substrate TAME inhibited monocyte-mediated cytotoxicity against ActD-treated WEHI 164 cells. The macromolecular protease inhibitors alpha-1 antitrypsin, bovine pancreatic trypsin inhibitor (BPTI), soybean trypsin inhibitor, and the synthetic protease substrate ATEE had little effect on monocyte cytotoxicity. When monocytes were preincubated with drugs for 1 hr and washed, TLCK, TPCK, and PMSF inhibited cytolysis, whereas the less effective chymostatin and TAME and the inactive BPTI had no effect under these conditions. Inhibition by preincubation with TLCK, PMSF, and TPCK was completely reversed after 6 hr of culture. Supernatants of monocyte cultures had lytic activity against ActD-treated WEHI 164 but not against untreated cells. Antiproteases inhibited the lytic activity of monocyte supernatants. These results strongly suggest that ROI do not play a critical role in monocyte-mediated rapid killing of drug-treated tumor cells, and that proteolytic enzymes are involved in this reactivity.  相似文献   

17.
Malaria parasites reside in human erythrocytes within a parasitophorous vacuole. The parasites are transmitted from the human to the mosquito by the uptake of intraerythrocytic gametocytes during a blood meal, which in the midgut become activated by external stimuli and subsequently egress from the enveloping erythrocyte. Gametocyte egress is a crucial step for the parasite to prepare for fertilization, but the molecular mechanisms of egress are not well understood. Via electron microscopy, we show that Plasmodium falciparum gametocytes exit the erythrocyte by an inside-out type of egress. The parasitophorous vacuole membrane (PVM) ruptures at multiple sites within less than a minute following activation, a process that requires a temperature drop and parasite contact with xanthurenic acid. PVM rupture can also be triggered by the ionophore nigericin and is sensitive to the cysteine protease inhibitor E-64d. Following PVM rupture the subpellicular membrane begins to disintegrate. This membrane is specific to malaria gametocytes, and disintegration is impaired by the aspartic protease inhibitor EPNP and the cysteine/serine protease inhibitor TLCK. Approximately 15 min post activation, the erythrocyte membrane ruptures at a single breaking point, which can be inhibited by inhibitors TLCK and TPCK. In all cases inhibitor treatment results in interrupted gametogenesis.  相似文献   

18.
Viruses encode suppressors of cell death to block intrinsic and extrinsic host-initiated death pathways that reduce viral yield as well as control the termination of infection. Cytomegalovirus (CMV) infection terminates by a caspase-independent cell fragmentation process after an extended period of continuous virus production. The viral mitochondria-localized inhibitor of apoptosis (vMIA; a product of the UL37x1 gene) controls this fragmentation process. UL37x1 mutant virus-infected cells fragment three to four days earlier than cells infected with wt virus. Here, we demonstrate that infected cell death is dependent on serine proteases. We identify mitochondrial serine protease HtrA2/Omi as the initiator of this caspase-independent death pathway. Infected fibroblasts develop susceptibility to death as levels of mitochondria-resident HtrA2/Omi protease increase. Cell death is suppressed by the serine protease inhibitor TLCK as well as by the HtrA2-specific inhibitor UCF-101. Experimental overexpression of HtrA2/Omi, but not a catalytic site mutant of the enzyme, sensitizes infected cells to death that can be blocked by vMIA or protease inhibitors. Uninfected cells are completely resistant to HtrA2/Omi induced death. Thus, in addition to suppression of apoptosis and autophagy, vMIA naturally controls a novel serine protease-dependent CMV-infected cell-specific programmed cell death (cmvPCD) pathway that terminates the CMV replication cycle.  相似文献   

19.
We have studied an indirect role of serine and thiol proteases in the activation of human neutrophils in vitro. Stimulation was evaluated using a chemiluminescence (CL) generation system. Receptor-dependent and receptor-independent stimuli were studied, e.g. opsonized zymosan, formyl-methionyl-leucyl-phenylalanine, platelet activating factor, phorbol myristate acetate, and calcium ionophore A23187. The serine protease inhibitors TPCK and TLCK, and thiol protease inhibitor PHMB, diminished the CL with different potencies and in a dose-dependent manner after treatment of cells with the various stimuli. Non-specific serine protease inhibitor, PMSF, and trypsin substrate TAME, showed a low inhibitory potency with respect to CL generation. Synthetic substrates for chymotrypsin (BTEE, ATEE) significantly inhibited CL with the various stimuli used with some differences in susceptibility to their inhibition. Specific chymotrypsin inhibitors diminished both the resting and activator-induced CL. We suggest that cell-bound chymotrypsin-like protease(s) is involved in the activation of signal transduction in human neutrophils after both receptor-dependent and receptor-independent stimulation.  相似文献   

20.
Human monocyte-derived Interleukin-1 (IL-1) stimulated a concentration-dependent extracellular release of azurophil (myeloperoxidase) and specific (vitamin B12-binding protein) granule constituents from cytochalasin B-treated human neutrophils. The serine protease inhibitors, L-1-tosylamide-2-phenylethyl-chloromethyl ketone (TPCK) and N-alpha-p-tosyl-L-lysine-chloromethyl ketone (TPCK) as well as an inhibitor of thiol protease activity, p-hydroxymercuribenzoate (PHMB), suppressed granule enzyme release from neutrophils activated with IL-1. Cycloheximide, an inhibitor of protein synthesis, had no effect on IL-1-induced neutrophil degranulation. Neutrophils pretreated with IL-1 were rendered unresponsive to subsequent exposure to this stimulus. IL-1-elicited granule exocytosis appears to be stimulus specific in that N-formyl-methionyl-leucyl-phenylalanine (FMLP), 1-0-hexadecyl/octadecyl-2-0-acetyl-sn-glyceryl-3-phosphorycholine (AGEPC), and 5(S),12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid (LTB4) were capable of eliciting a secretory response from IL-1-pretreated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号