首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potentiometric, visible, infrared, electron spin, and nuclear magnetic resonance studies of the complexation of N-(2-acetamido)iminodiacetic acid (H2ADA) by Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) are reported. Ca(II) and Mg(II) were found not to form 2:1 ADA2- to M(II) complexes, while Mn(II), Cu(II), Ni(II), Zn(II), and Co(II) did form 2:1 metal chelates at or below physiological pH values. Co(II) and Zn(II), but not Cu(II), were found to induce stepwise deprotonation of the amide groups to form [M(H-1ADA)4-(2)]. Formation (affinity) constants for the various metal complexes are reported, and the probable structures of the various metal chelates in solution are discussed on the basis of various spectral data.  相似文献   

2.
The specificity of glycogen synthase (casein) kinase-1 (CK-1) for different divalent metal ions was explored in this study. Of nine metal ions (Mg2+, Mn2+, Zn2+, Cu2+, Ca2+, Ba2+, Ni2+, Co2+, Fe2+) tested, only Mg2+ supported significant kinase activity. Several of the other metals, however, inhibited the Mg2+-stimulated kinase activity. Half-maximal inhibitions by Mn2+, Zn2+, Co2+, Fe2+, and Ni2+ were observed at 55, 65, 110, 125, and 284 microM, respectively. Kinetic analyses indicate that the metal ions are acting as competitive inhibitors of CK-1 with respect to the protein substrate (casein) and as noncompetitive inhibitors with respect to the nucleotide substrate (ATP). The inhibition of CK-1 by the different metal ions can be reversed by EGTA.  相似文献   

3.
Two extrinsic probes, pyrene-maleimide and eosin-maleimide, were used to label specific SH groups of the enzyme myo-inositol monophosphatase. The fluorescence of pyrene-monophosphatase is enhanced upon addition of the activating metal ions Co(II) and Mg(II). Co(II) ions bind with a dissociation constant of 4 μM, whereas the apparent activation constant K a is 0.4 mM. Energy transfer measurements demonstrated that the pyrene chromophore, covalently linked to Cys-218, is within 9 Å of the metal ion Tb(III) coordinated to the metal-binding site. The phosphorescence emitted by eosin covalently linked to the protein is quenched by the addition of the activating cations Co(II) and Mg(II). Phosphorescence titrations conducted under anaerobic conditions were used to determine a dissociation constant of approximately 3 μM for the binding of Co(II) ions. The results are consistent with the hypothesis that two activating ions per monomeric subunit participate in the catalytic mechanism. The affinity of the tightly bound ion is at least 100-fold greater than the affinity of the weakly bound ion.  相似文献   

4.
Although microorganisms have the potential to reduce metals, products with elementary forms are unusual. In the present study, a strain of Pseudomonas sp. MBR was tested for its ability to reduce metal ions to their elementary forms coupled to biomineralization under aerobic conditions. The Pseudomonas sp. MBR strain was able to reduce metals such as Fe(III), Mn(II), Cu(II), Ni(II), Cd(II), Co(II), Al(III), Se(IV), and Te(IV) as electron acceptors to elementary forms using citrate, lactate, pyruvate, succinate, malate, glucose, or ethanol as electron donors. Growth and reduction during biomineralization occurred within the pH range of 6.0 to 11.0 and temperature range of 4 to 40 °C, with an optimum growth temperature of 28 °C. The resistance of Ni(II) varied from 0.5 to 5 mM. Ni(II) reduction was still observed when nitrate was present in addition to oxygen as a potential electron acceptor. The Ni(II) reduction efficiency was related with the molar ratio of the electron donor to Ni(II). Unlike other dissimilatory metal-reducing bacteria, which oxidizes organic matter with Fe(III) or Mn(IV) as the sole electron acceptor coupled to energy production under facultative anaerobic conditions, this strain used oxygen as an electron acceptor combined with metal reduction. The aerobic metal reduction may relate to a co-metabolic reduction. Transmission electron microscopy images demonstrated that the cells had the ability to accumulate heavy metals, and that the detoxicity mechanism was intracellular metal reduction. These results suggested that the use of Pseudomonas sp. MBR could be promising for toxic heavy metal bioremediation and biological metallurgy.  相似文献   

5.
Rabbit muscle pyruvate kinase catalyzes the hydrolysis of P-enolpyruvate at the same active site which catalyzes the physiologically important kinase reaction. The hydrolase activity is lower than the kinase activity by a factor of at least 10(3). There are specific monovalent cation and divalent cation requirements. No other cofactors are required. The relative activation of the pyruvate kinase for the hydrolase reaction is: Ni(II) greater than Co(II) greater than Mg(II) greater than Mn(II). This parallels the rates of nonenzymatic hydrolysis of P-enolpyruvate (Benkovic, S.J., and Schray, K.J. (1968) Biochemistry 7, 4097-4102). The pH rate profiles of the hydrolase and kinase reactions activated by Ni(II) and Co(II) are similar, suggesting common features in their mechanisms. In contrast to the kinase reaction, the reaction velocity of the hydrolase increases at high Co(II) concentrations indicating a second mode for hydrolysis.  相似文献   

6.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

7.
Metal binding to serum albumins is examined by oxidative protein-cleavage chemistry, and relative affinities of multiple metal ions to particular sites on these proteins were identified using a fast and reliable chemical footprinting approach. Fe(ii) and Cu(ii), for example, mediate protein cleavage at their respective binding sites on serum albumins, in the presence of hydrogen peroxide and ascorbate. This metal-mediated protein-cleavge reaction is used to evaluate the binding of metal ions, Na(+), Mg(2+), Ca(2+), Al(3+), Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ce(3+) to albumins, and the relative affinities (selectivities) of the metal ions are rapidly evaluated by examining the extent of inhibition of protein cleavage. Four distinct systems Fe(II)/BSA, Cu(II)/BSA, Fe(II)/HSA and Cu(II)/HSA are examined using the above strategy. This metallomics approach is novel, even though the cleavage of serum albumins by Fe(II)/Cu(II) has been reported previously by this laboratory and many others. The protein cleavage products were analyzed by SDS PAGE, and the intensities of the product bands quantified to evaluate the extent of inhibition of the cleavage and thereby evaluate the relative binding affinities of specific metal ions to particular sites on albumins. The data show that Co(II) and Cr(III) showed the highest degree of inhibition, across the table, followed by Mn(II) and Ce(III). Alakali metal ions and alkaline earth metal ions showed very poor affinity for these metal sites on albumins. Thus, metal binding profiles for particular sites on proteins can be obtained quickly and accurately, using the metallomics approach.  相似文献   

8.
Bovine calmodulin, spin-labeled at tyrosine-99, has been utilized in electron paramagnetic resonance (EPR) studies to investigate calmodulin interactions with Ca(II), Cd(II), and Mg(II). The addition of either Ca(II) or Cd(II) to apo-calmodulin results in a complex capable of activating target enzymes, such as 3', 5'-cyclic nucleotide phosphodiesterase (J. M. Buccigross, C. L. O'Donnell, and D. J. Nelson, Biochem. J. 235 677 [1986]), while Mg(II) is known to be incapable of activating calmodulin toward any of its target enzymes. Additions of Ca(II) and Cd(II) to spin-labeled apo-calmodulin gave rise to very similar changes in the EPR spectrum of the bound label, consistent with a dramatic decrease in the mobility of the nitroxide spin-label covalently attached to tyrosine-99. Addition of Mg(II) to spin-labeled apo-calmodulin caused no change in the EPR spectrum of the bound label. Thus, the conformational changes induced by Ca(II) and Cd(II) ion binding to calmodulin, which lead to decreased tyrosine-99 spin label mobility, are clearly not occurring when Mg(II) ion binds. These results are consistent with the results of other spectroscopic studies, which indicate that "activating" metal ions, such as Ca(II) and Cd(II), produce calmodulin conformers that are different from those produced by "inactivating" metal ions, such as Mg(II).  相似文献   

9.
All kinases require an essential divalent metal for their activity. In this study, we investigated the metal dependence of cyclin-dependent kinase 4 (CDK4). With Mg(2+) as the essential metal and MgATP being the variable substrate, the maximum velocity, V, was not affected by changes in metal concentration, whereas V/K was perturbed, indicating that the metal effects were mainly derived from a change in the K(m) for MgATP. Analysis of the metal dependence of initial rates according to a simple metal binding model indicated the presence on enzyme of one activating metal-binding site with a dissociation constant, K(d(a)), of 5 +/-1 mM, and three inhibitory metal-binding sites with an averaged dissociation constant, K(d(i)), of 12+/-1 mM and that the binding of metal to the activating and inhibitory sites appeared to be ordered with binding of metal to the activating site first. Substitution of Mn(2+) for Mg(2+) yielded similar metal dependence kinetics with a value of 1.0+/-0.1 and 4.7+/-0.1 for K(d(a)) and K(d(i)), respectively. The inhibition constants for the inhibition of CDK4 by MgADP and a small molecule inhibitor were also perturbed by Mg(2+). K(d(a)) values estimated from the metal variation of the inhibition of CDK4 by MgADP (6+/-3 mM) and a small molecule inhibitor (3+/-1 mM), were in good agreement with the K(d(a)) value (5+/-1 mM) obtained from the metal variation of the initial rate of CDK4. By using the van't Hoff plot, the temperature dependence of K(d(a)) and K(d(i)) yielded an enthalpy of -6.0 +/- 1.1 kcal/mol for binding of Mg(2+) to the activating site and -3.2 +/- 0.6 kcal/mol for Mg(2+) binding to the inhibitory sites. The values of associated entropy were also negative, indicating that these metal binding reactions were entirely enthalpy-driven. These data were consistent with metal binding to multiple sites on CDK4 that perturbs the enzyme structure, modulates the enzyme activity, and alters the affinities of inhibitor for the metal-bound enzyme species. However, the affinities of small molecule inhibitors for CDK4 were not affected by the change of metal from Mg(2+) to Mn(2+), suggesting that the structures of enzyme-Mg(2+) and enzyme-Mn(2+) were similar.  相似文献   

10.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   

11.
Amorphous powders and films of some metal hyaluronate complexes of general composition (C14H20O11N)2 x xH2O (M = Mn2+, Ni2+ and Co2+) have been prepared at pH 5.5-6.0. The coordination geometry around the metal ions has been analyzed by EXAFS (extended X-ray absorption fine structure) and FTIR spectroscopy. Mn2+, Ni2+, and Co2+ ions are coordinated to carboxylate oxygen atoms and water molecules. The process of local geometry formation round the metal ions is sensitive to sample preparation.  相似文献   

12.
The effect of Cu(II), Ni(II), Zn(II), Mg(II), and Mn(II) on the fluorescence of porcine kidney cytosol leucine aminopeptidase and three of its dansyl(Dns) peptide substrates, Leu-Gly-NHNH-Dns, Leu-Gly-NH(CH2)2NH-Dns, and Leu-Gly-NH(CH2)6NH-Dns, has been investigated. These five metal ions were chosen for study because each binds to the regulatory metal binding site of leucine aminopeptidase. Since the binding is relatively weak, kinetic studies of the different metalloderivatives of the enzyme are normally carried out in the presence of large molar excesses of these metal ions that can potentially affect both the enzyme and substrate. The fluorescence of all of the dansyl-peptides, as well as several other dansyl species, is quenched by Ni(II) and Cu(II), but not by Mg(II), Mn(II), or Zn(II). The absorption spectra of these dansyl substrates are also perturbed by Ni(II) and Cu(II). The rate at which maximal quenching for some dansyl species is attained after mixing with Ni(II) and Cu(II) is slow and the quenching is reversed on addition of EDTA. These results indicate that the quenching is the result of complex formation between the fluorophores and these metal ions. The association constants for the metal complexes have been determined from Stern-Volmer plots. In addition to complex formation, Ni(II) and Cu(II) cause the degradation of Leu-Gly-NHNH-Dns through a two step mechanism involving loss of dansic acid. Ni(II) and Cu(II) also partially quench the fluorescence of leucine aminopeptidase through contact with its surface accessible Trp residues. These observations indicate that care must be taken in stopped flow fluorescence studies of reactions between this enzyme and its dansyl substrates to avoid adverse effects brought about by Ni(II) and Cu(II).  相似文献   

13.
Effect of metal ions on the activity of the catalytic domain of calcineurin   总被引:1,自引:0,他引:1  
Calcineurin (CN) is a heterodimer, composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). There are four functional domains present in CNA, which are catalytic domain (CNa), CNB-binding domain (BBH), CaM-binding domain (CBH) and autoinhibitory domain (AI). It has been shown previously that the in vitro activity of calcineurin is relied primarily on the binding of metal ions. Mn2+ and Ni2+ are the most crucial cation-activators for this enzyme. In order to determine which domain(s) in CN is functionally regulated by metal ions, the rat CNA alpha subunit and its catalytic domain (CNa) were cloned and expressed in E. coli. The effects of Mn2+, Ni2+ and Mg2+ on the catalytic activity of these purified proteins were examined. Our results demonstrate that all the metal ions tested in this study activated either CNA or CNa. However, the activation degree of CNa by the metal ions was much higher than that of CNA. In term of different metal ions, the activating extents to CNA and CNa were different. To CNA, the activating order from high to low was Mg2+ > > Ni2+ > Mn2+, but Mn2+ > Ni2+ > > Mg2+ to CNa. No effect of CaM/Ca2+ and CNB/Ca2+ on the activity of CNa was observed in our experiments. Moreover, a weak interaction (or untight coordination binding) between metal ions and the enzyme molecule was also identified. These results suggest that the activation of these enzymes by the exogenous metal ions might be via both regulating fragment of CNA (including BBH, CBH and AI) and catalytic domain (CNa), and mainly via regulating fragment to CNA and mainly via catalytic domain to CNa. The activating extents of metal ions via catalytic domain were higher than that via regulating fragment. The results obtained in this study should be very useful for understanding the molecular mechanism underlying the interaction between calcineurin and metal ions, especially Mn2+, Ni2+ and Mg2+.  相似文献   

14.
Two extrinsic probes, pyrene-maleimide and eosin-maleimide, were used to label specific SH groups of the enzyme myo-inositol monophosphatase. The fluorescence of pyrene-monophosphatase is enhanced upon addition of the activating metal ions Co(II) and Mg(II). Co(II) ions bind with a dissociation constant of 4 M, whereas the apparent activation constant K a is 0.4 mM. Energy transfer measurements demonstrated that the pyrene chromophore, covalently linked to Cys-218, is within 9 Å of the metal ion Tb(III) coordinated to the metal-binding site. The phosphorescence emitted by eosin covalently linked to the protein is quenched by the addition of the activating cations Co(II) and Mg(II). Phosphorescence titrations conducted under anaerobic conditions were used to determine a dissociation constant of approximately 3 M for the binding of Co(II) ions. The results are consistent with the hypothesis that two activating ions per monomeric subunit participate in the catalytic mechanism. The affinity of the tightly bound ion is at least 100-fold greater than the affinity of the weakly bound ion.  相似文献   

15.
We have observed previously that the reactions catalyzed by hypoxanthine/guanine phosphoribosyltransferase (HGPRTase) are activated by Mg(II), Mn(II), and Co(II), and we have defined the mechanism by which these activations proceed [Biochemistry 22, 3419-3424 (1983)]. A more extensive survey of the kinds of metal ions that will activate the HGPRTase catalysis now has been completed through the use of an HPLC assay procedure. Although Fe(II) and Ca(II) are unable to activate this reaction, a significant activation was achieved with the addition of spectroscopically pure Zn(II) to the assay solution. In addition some IMP synthesis resulted from the addition of Ni(II) to the assay mixture. Both the Zn(II) and Ni(II) kinetic effects on HGPRTase over a limited metal ion concentration range have been analyzed through the use of curve-fitting exercises. These results, in addition to the similar pH profiles for the activations by Mg(II), Mn(II), Co(II), and Zn(II), suggest that all of these metal ions activate the HGPRTase-catalyzed synthesis of IMP by way of the same mechanism [model II as defined by London and Steck, Biochemistry 8, 1767-1779 (1969)], during which two divalent ions bind to the HGPRTase active site per molecule of PRibPP.  相似文献   

16.
A new ligand N-salicyloyl-N'-o-hydroxythiobenzhydrazide (H2Sotbh) forms complexes [Mn(HSotbh)2], [Fe(Sotbh-H)(H2O)2], [M(Sotbh)] [M=Co(II), Cu(II) and Zn(II)] and [Ni(Sotbh)(H(2)O)2], which were characterized by various physico-chemical techniques. M?ssbauer spectrum of [Fe(Sotbh-H)(H2O)2] reveals the quantum admixture of 5/2 and 3/2 spin-states. Mn(II), Cu(II) and Ni(II) complexes were observed to inhibit the growth of tumor in vitro, whereas, Fe(III), Co(II), Zn(II) complexes did not. In vivo administration of Mn(II), Cu(II) and Ni(II) resulted in prolongation of survival of tumor bearing mice. Tumor bearing mice administered with Mn(II), Cu(II) and Ni(II) complexes showed reversal of tumor growth associated induction of apoptosis in lymphocytes. The paper discusses the possible mechanisms and therapeutic implication of the H2Sotbh and its metal complexes in tumor regression and tumor growth associated immunosuppression.  相似文献   

17.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

18.
Formation (affinity) constants for 1:1 complexes of N-(2-acetamido)iminodiacetic acid (ADAH2) with Ca(II), Mg(II), Mn(II), Zn(II), Co(II), Ni(II), and Cu(II) have been determined. Probable structures of the various metal chelates existing in solution are discussed. Values for the deprotonation of the amide group in [Cu(ADA)] and subsequent hydroxo complex formation are also reported. The use of ADA as a buffer is considered in terms of metal buffers complexes which can be formed at physiological pH, i.e., at pH 7.0 there is essentially no free metal ion in 1:1 M2+ to ADA solutions.  相似文献   

19.
Divalent metal derivatives of the hamster dihydroorotase domain.   总被引:1,自引:0,他引:1  
Dihydroorotase (DHOase, EC 3.5.2.3) is a zinc enzyme that catalyzes the reversible cyclization of N-carbamyl-L-aspartate to L-dihydroorotate in the third reaction of the de novo pathway for biosynthesis of pyrimidine nucleotides. The recombinant hamster DHOase domain from the trifunctional protein, CAD, was overexpressed in Escherichia coli and purified. The DHOase domain contained one bound zinc atom at the active site which was removed by dialysis against the chelator, pyridine-2,6-dicarboxylate, at pH 6.0. The apoenzyme was reconstituted with different divalent cations at pH 7.4. Co(II)-, Zn(II)-, Mn(II)-, and Cd(II)-substituted DHOases had enzymic activity, but replacement with Ni(2+), Cu(2+), Mg(2+), or Ca(2+) ions did not restore activity. Atomic absorption spectroscopy showed binding of one Co(II), Zn(II), Mn(II), Cd(II), Ni(II), or Cu(II) to the enzyme, while Mg(II) and Ca(II) were not bound. The maximal enzymic activities of the active, reconstituted DHOases were in the following order: Co(II) --> Zn(II) --> Mn(II) --> Cd(II). These metal substitutions had major effects upon values for V(max); effects upon the corresponding K(m) values were less pronounced. The pK(a) values of the Co(II)-, Mn(II)-, and Cd(II)-substituted enzymes derived from pH-rate profiles are similar to that of Zn(II)-DHOase, indicating that the derived pK(a) value of 6.56 obtained for Zn-DHOase is not due to ionization of an enzyme-metal aquo complex, but probably a histidine residue at the active site. The visible spectrum of Co(II)-substituted DHOase exhibits maxima at 520 and 570 nm with molar extinction coefficients of 195 and 210 M(-1) cm(-1), consistent with pentacoordination of Co(II) at the active site. The spectra at high and low pH are different, suggesting that the environment of the metal binding site is different at these pHs where the reverse and forward reactions, respectively, are favored.  相似文献   

20.
31P NMR studies with Cd(II) and Zn(II) chelates of adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) and the Cd(II) chelate of adenosine 5'-O-(2-thiotriphosphate) (ATPbetaS) indicate that these metal ions chelate to the sulfur atom of the thiophosphate group. Since Mg(II) chelates to oxygen of the thiophosphate group of diastereoisomer is equivalent to the configuration of the Cd(II) chelate of the opposite diastereoisomer. As a consequence, an inversion of the stereospecificity is observed when Cd(II) is substituted for Mg(II) in the phosphoryl transfer reactions catalyzed by yeast hexokinase and rabbit muscle pyruvate kinase. When Co(II) is the activating ion for yeast hexokinase with ATPbetaS as substrate, no stereospecificity is observed. Since the absolute configuration for the diastereoisomer of Co(III)(NH3)4ATP which is the active substrate for yeast hexokinase has been established by Cornelius and Cleland (Cornelius, R. D., and Cleland, W. W. (1978) Biochemistry, in press), the absolute stereochemistry of the Mg(II) complex of the B isomer of ATPbetaS is now established by its stereospecificity in the hexokinase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号