首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteoglycans isolated from the Swarm rat chondrosarcoma were shown to contain 35 mol of phosphate/mol of proteoglycan. While 20% of this phosphate was released by digestion with dilute alkali in the presence of sodium borohydride and is presumably of the phosphoserine/phosphothreonine type, 78% of the phosphate copurified with the peptide-free chondroitin sulfate chains. When chondroitin sulfate chains purified by ethanol precipitation or Sephacryl S200 column chromatography were digested with chondroitinase AC and the digests chromatographed on Bio-Gel P-4, the phosphate co-migrated with a carbohydrate fragment that contained 2 glucuronic acid (one as delta 4,5-unsaturated sugar), 1-galactosamine, 2-galactose, and 1-phosphate residue/xylitol. A second fragment of similar composition but lacking phosphate was also recovered in a ratio of about 3 to 1 relative to the phosphorylated fragment. The phosphate in the chondroitin sulfate linkage region fragment had the alkaline phosphatase sensitivity as well as 31P NMR spectra of a monophosphate esterified to a secondary sugar alcohol. The phosphate was localized on the C-2 of the chain initiating xylose since these residues as xylitol showed a delayed release during acid hydrolysis and the xylitol was recovered intact after periodate oxidation. In the chondrosarcoma, 2-phosphoxylose appears to be a normal synthetic product since [32P]phosphate was readily incorporated into the proteoglycan and the incorporated isotope had similar biochemical properties as the unlabeled phosphate.  相似文献   

2.
Swarm rat chondrosarcoma cell cultures were metabolically labeled with [35S]sulfate, [3H]glucose, or [3H]glucosamine. Chondroitin sulfate chains were isolated from purified aggrecan using alkaline borohydride treatment and Superose 6 chromatography. Various linkage region oligosaccharide alditols were derived from these chains using sequential chondroitinase digestions (ABC lyase followed by ACII lyase). They were then further processed by mercuric acetate treatment, which removed the 4,5-unsaturated uronosyl residue from the nonreducing end of the linkage, and then beta-galactosidase digestion which liberated the 2 galactose residues from the xylitol reducing terminus. Alkaline phosphatase digestions were performed to verify the presence of phosphate esters. All linkage region structures were isolated and identified using a combination of Progel-TSK G2500 and CarboPac PA1 chromatography steps in conjunction with monosaccharide analyses. This study revealed that chondroitin sulfate chains from aggrecan synthesized by rat chondrosarcoma cells in vitro have the following properties: 1) three out of every four of their linkage regions carry a phosphate ester on xylose, 2) nearly three out of every five chains begin the repeating disaccharide region with an unsulfated first disaccharide unit, 3) nearly twice as many nonphosphorylated chains have a sulfated first disaccharide than their phosphorylated counterparts, and 4) the vast majority of these chains do not contain sulfated galactose in their linkage regions. This report also describes a borohydride reduction procedure to confer alkali stability to the 3-substituted, unsaturated disaccharides derived from chondroitinase digests of chondroitin sulfate. Furthermore, a CarboPac PA1 method is demonstrated that separates these reduced disaccharides with exceptional resolution.  相似文献   

3.
Selective periodate oxidation of unsubstituted l-iduronic acid residues in copolymeric dermatan sulphate chains was followed by reduction-hydrolysis or alkaline elimination. By this procedure the glucuronic acid-containing periods were isolated in oligosaccharide form; general formula: [Formula: see text] Further degradation of these oligosaccharides with chondroitinase-AC yielded three types of products: (a) sulphated trisaccharide containing an unsaturated uronosyl moiety in the non-reducing terminal and a C(4) fragment in the reducing terminal, DeltaUA-GalNAc-(-SO(4))-R; (b) monosulphated, unsaturated disaccharide, DeltaUA-GalNAc-SO(4) when n is greater than or equal to 2; and (c) N-acetylgalactosamine with or without sulphate. Oligosaccharides containing a single glucuronic acid residue (n=1) comprised more than half of the glucuronic acid-containing oligosaccharides. The terminal N-acetylgalactosamine moiety of the shortest oligosaccharide was largely 4-sulphated, whereas higher oligosaccharides primarily contained 6-sulphated or unsulphated hexosamine moieties in the same position. Moreover, IdUA-SO(4)-containing oligosaccharides were encountered. These oligosaccharides were resistant to the action of chondroitinase-ABC.  相似文献   

4.
Chondrocytes isolated from the Swarm rat chondrosarcoma were incubated in culture with [1-3H]glucose for 30 min to 8 h. Labeled proteoglycans were isolated, treated with borohydride under alkaline conditions, and the three complex sugar structures purified: N- and O-linked oligosaccharides and chondroitin sulfate chains. The amount of incorporated radioactivity into each component sugar was analyzed by HPLC after enzyme digestion and hydrolysis. The kinetic data for labeling of each sugar over the time course of the experiment were fit to first-order rate equations and the half times (t1/2) to linear labeling were calculated. The t1/2 values were essentially the same, 5-8 min, for galactose in all three complex sugar structures and for chain glucuronic acid in chondroitin sulfate, while that for xylitol in chondroitin sulfate, 15.8 min, was significantly longer. Thus, oligosaccharide synthesis is concomitant with chondroitin sulfate chain synthesis; the addition of the chondroitin sulfate linkage galactose occurs at or nearly at the same time as chain elongation while the addition of linkage xylose residues to the core protein may precede chain synthesis by up to 8 min. Since the intracellular t1/2 of the core protein precursor for these cells is 45 to 90 min, the data strongly suggest that the addition of xylose is not completed to any significant extent while the polypeptide is still nascent or shortly after its release into the rough endoplasmic reticulum. It is proposed that the addition of xylose to the core protein precursor is a late endoplasmic reticulum or early Golgi event. The analytical data were consistent with the presence of ester phosphate on about 80% of the xylose residues of the newly synthesized proteoglycan.  相似文献   

5.
Cultured arterial smooth muscle cells synthesize a cell-associated heparan sulfate proteoglycan which consists of a 92 kDa core protein with 3 to 4 heparan sulfate side chains covalently attached. Biosynthesis of the cell-associated heparan sulfate proteoglycan was compared in proliferating and in non-dividing vascular smooth muscle cells which are preincubated in the presence of [35]sulfate or a combination of [35S]methionine and [3H]glucosamine. The Mr of the core protein was identical in either growth state, but changes in the structure of the heparan sulfate side chains were observed. Non-dividing (postconfluent) arterial smooth muscle cells form longer heparan sulfate chains with a higher proportion of hydrophobic (N-acetyl) groups than proliferating (preconfluent) cells as judged from gel filtration experiments, hydrophobic interaction chromatography and heparitinase degradation. An enzyme preparation from proliferating cells catalyzes deacetylation and N-sulfation of heparan sulfate at a 5-fold higher activity than from non-dividing cells. Cell density-dependent structural differences of heparan sulfate are related to the finding that heparan sulfate isolated from non-dividing cells has a 10-fold higher antiproliferative potency than heparan sulfate from proliferating (preconfluent) cells.  相似文献   

6.
The structures of O-glycosidically linked oligosaccharides present in the heparan sulfate and chondroitin sulfate proteoglycans isolated from the culture medium of a normal (HBL-100) and a malignant (MDA-MB-231) human mammary epithelial cell line have been determined. Both proteoglycan types from the two cell lines contain a series of O-linked oligosaccharides ranging in size from di- to hexasaccharide. Cells were grown in the presence of either [3H]glucosamine or [3H]galactose and Na2 35SO4, and the proteoglycans were isolated as described (Gowda, D. C., Bhavanandan, V. P., and Davidson, E. A. (1986) J. Biol. Chem. 261, 4926-4934). The O-linked oligosaccharides were released from the proteoglycans by alkaline borohydride treatment and purified by a combination of gel filtration and high voltage paper electrophoresis. The structures of two neutral and seven acidic oligosaccharides were established based on sugar composition, the results of periodate oxidation, sequential exoglycosidase treatment, and methylation analysis. Periodate oxidation, taking advantage of tritium label at specific positions of constituent sugars, proved to be a valuable tool in establishing the structure of isomeric components in the mixture. The structures of the oligosaccharides were assigned as follows: (Formula: see text) The oligosaccharide containing both sialic acid and ester sulfate is novel and has not been reported previously.  相似文献   

7.
Monensin is a monovalent metal ionophore that affects the intracellular translocation of secretory proteins at the level of trans-Golgi cisternae. Exposure of endothelial cells to monensin results in the synthesis of heparan sulfate and chondroitin sulfate with a lower degree of sulfation. The inhibition is dose dependent and affects the ratio [35S]-sulfate/[3H]-hexosamine of heparan sulfate from both cells and medium, with no changes in their molecular weight. By the use of several degradative enzymes (heparitinases, glycuronidase, and sulfatases) the fine structure of the heparan sulfate synthesized by control and monensin-treated cells was investigated. The results have shown that among the six heparan sulfate disaccharides there is a specific decrease of the ones bearing a sulfate ester at the 6-position of the glucosamine moiety. All other biosynthetic steps were not affected by monensin. The results are indicative that monensin affects the hexosamine C-6 sulfation, and that this sterification is the last step of the heparan sulfate biosynthesis and should occur at the trans-Golgi compartment.  相似文献   

8.
The structure of the linkage region of chondroitin sulfate chains attached to the hybrid proteoglycans of the Engelbreth-Holm-Swarm mouse tumor was investigated. The peptidoglycan fraction which contains oversulfated chondroitin sulfate rich in the GlcA beta 1-3GalNAc-4,6-diO-sulfate unit and undersulfated heparan sulfate rich in GlcA beta 1-4GlcNAc and GlcA beta 1-4GlcN-2N-sulfate units was isolated after exhaustive protease digestion of the acetone powder of the tumor tissue, (GlcA, glucuronic acid; GalNAc, 2-deoxy-2-N-acetylamino-D-galactose). Glycosaminoglycans were released by beta-elimination using NaB3H4 and digested with chondroitinase ABC. The linkage region fraction was separated from heparan sulfate by gel filtration and fractionated by HPLC on an amine-bound silica column. Six radiolabeled compounds (L1-L6) were obtained and structurally analyzed by cochromatography with authentic hexasaccharide alditols recently isolated by us from the linkage region, and by digestion using chondroitinase ACII, alkaline phosphatase and beta-galactosidase in conjugation with HPLC. These compounds shared the conventional hexasaccharide backbone structure: delta GlcA beta 1-3GalNAc beta 1-4GlcA beta 1-3Gal beta 1-3Gal beta 1-4Xyl-ol, (delta GlcA, delta 4.5-GlcA or D-gluco-4-enepyranosyluronic acid). L1 was not sulfated or phosphorylated. L2 and L4 were monosulfated at C-6 and C-4 of the GalNAc residue, respectively. Upon alkaline phosphatase digestion, L3, L5 and L6 were converted to L1, L2 and L4, respectively. Analysis of the periodate oxidation products indicated that the phosphate group in L3, L5 and L6 is located at C-2 of Xyl-ol. These results suggest that Xyl-2-O-phosphate is associated with both 4-O-sulfated and 6-O-sulfated GalNAc units and does not directly determine the sulfation pattern of chondroitin sulfate.  相似文献   

9.
It has been proposed that plant cell-wall polysaccharides are subject in vivo to non-enzymic scission mediated by hydroxyl radicals (-*OH). In the present study, xyloglucan was subjected in vitro to partial, non-enzymic scission by treatment with ascorbate plus H(2)O(2), which together generate -*OH. The partially degraded xyloglucan appeared to contain ester bonds within the backbone, as indicated by an irreversible decrease in viscosity upon alkaline hydrolysis. Aldehyde and/or ketone groups were also introduced into the polysaccharide by -*OH-attack, as indicated by staining with aniline hydrogen-phthalate and by reaction with NaB(3)H(4). The introduction of ester and oxo groups supports the proposed sequence of reactions: (a) -*OH-mediated H-abstraction to produce a carbon-centred carbohydrate radical; (b) reaction of the latter with O(2); and (c) elimination of a hydroperoxyl radical (HO(2)*-). When the partially degraded xyloglucan was reduced with NaB(3)H(4) followed by acid hydrolysis, several 3H-aldoses were detected ([3H]galactose, [3H]xylose, [3H]glucose, [3H]ribose and probably [3H]mannose), in addition to unidentified 3H-products (probably including anhydroaldoses). 3H-Alditols were undetectable, showing that few or no conventional reducing termini were introduced. Digestion of the NaB(3)H(4)-reduced, partially degraded xyloglucan with Driselase released 25 times more [3H]Xyl-alpha-(1-->6)-Glc than Xyl-alpha-(1-->6)-[3H]Glc, suggesting that the xylose side-chains of the xyloglucan had been more heavily attacked by -*OH than the glucose residues of the backbone. The radioactive xyloglucan was readily digested by cellulase, yielding 3H-products in the hepta- to nonasaccharide range. A fingerprinting strategy for identifying -*OH-attacked xyloglucan in plant cell walls is proposed.  相似文献   

10.
Structural requirements for heparan sulphate self-association   总被引:4,自引:0,他引:4  
To investigate heparan sulphate self-association, various sub-fractions of beef-lung heparan sulphate have been subjected to affinity chromatography on heparan sulphate-agarose. A particular variant of heparan sulphate was chiefly bound to matrices substituted with the same or cognate heparan sulphates. N-desulphation and N-acetylation abolished the chain-chain interaction. Also, dermatan sulphates and chondroitin sulphates showed affinity for heparan sulphate-agarose. [3H]Heparan sulphates that were bound to a heparan sulphate-agarose were desorbed by elution with the corresponding heparan sulphate chains and also with unrelated heparan sulphates, heparin, and the galactosaminoglycans to various degrees. However, the corresponding heparan sulphate species was the most efficient at low concentrations. Dextran sulphate was unable to desorb bound heparan sulphate. When the corresponding heparan sulphate was N-desulphated/N-acetylated, carboxyl-reduced, or periodate-oxidised (D-glucuronate), the modified polymer was unable to displace [3H]heparan sulphate from heparan sulphate-agarose. The displacing ability of heparin was also destroyed by periodate oxidation. It is concluded that self-interaction between heparan sulphate chains is strongly dependent on the overall molecular conformation. The N-sulphate and carboxylate groups as well as the integrity of the D-glucuronate residue are all essential for maintaining the proper secondary structure.  相似文献   

11.
The glycosylphosphatidylinositol (GPI)-anchor of the plasma membrane-associated heparan sulfate (HS) proteoglycan was metabolically radiolabeled with [3H]myristic acid, [3H]palmitic acid, [3H]inositol, [3H]ethanolamine, or [32P]phosphate in rat ovarian granulosa cell culture. Cell cultures labeled with [3H]myristic acid or [3H]palmitic acid were extracted with 4 M guanidine HCl buffer containing 2% Triton X-100 and the proteoglycans were purified by ion exchange chromatography after extensive delipidation. Specific incorporation of 3H into GPI-anchor was demonstrated by removing the label with a phosphatidylinositol-specific phospholipase C (PI-PLC). Incorporation of 3H activity into glycosaminoglycans and core glycoproteins was also demonstrated. However, the specific activity of 3H in these structures was approximately 2 orders of magnitude lower than that in the GPI-anchor, suggesting that 3H label was the result of the metabolic utilization of catabolic products of the 3H-labeled fatty acids. PI-PLC treatment of cell cultures metabolically labeled with [3H]inositol, [3H]ethanolamine, or [32P]phosphate specifically released radiolabeled cell surface-associated HS proteoglycans indicating the presence of GPI-anchor in these proteoglycans. GPI-anchored HS proteoglycans accounted for 20-30% of the total cell surface-associated HS proteoglycans and virtually all of them were removed by PI-PLC. These results further substantiate the presence of GPI-anchored heparan sulfate proteoglycan in ovarian granulosa cells and its cell surface localization.  相似文献   

12.
The secretion of heparan sulphate by cultured rat hepatocytes was increased in the presence of (+)-catechin. The increase was due to a new species of heparan sulphate that lacked the carbohydrate-protein linkage between xylose and serine in normal heparan sulphate proteoglycan. The mean molecular weight of this heparan sulphate varied between 6300 and 9500, was not affected by treatment with alkali or Pronase and was 2-3-fold lower than that of chains released from heparan sulphate proteoglycan. After digestion with Pronase, only a minor fraction of chains contained serine, and after treatment with alkali and NaB3H4 reduction less than 5% of the chains exposed [3H]xylitol at the reducing terminals. These results suggested that (+)-catechin or metabolites of it acted as acceptors of heparan sulphate synthesis. In cultures treated wih cycloheximide, synthesis of heparan sulphate decreased to less than 5%. (+)-Catechin could restore the heparan sulphate synthesis to almost normal values. The (+)-catechin-induced heparan sulphate was secreted. Only a small fraction was incorporated into the plasma membrane or other cellular compartments. This may indicate that the protein core is essential for association of heparan sulphate with cellular compartments.  相似文献   

13.
The metabolism of heparan sulfate proteoglycan was studied in monolayer cultures of a rat hepatocyte cell line. Late log cells were labeled with 35SO4(2-) or [3H] glucosamine, and labeled heparan sulfate, measured as nitrous acid-susceptible product, was assayed in the culture medium, the pericellular matrix, and the intracellular pools. Heparan sulfate in the culture medium and the intracellular pools increased linearly with time, while that in the matrix reached a steady-state level after a 10-h labeling period. When pulse-labeled cells were incubated in unlabeled medium, a small fraction of the intracellular pool was released rapidly into the culture medium while the matrix heparan sulfate was taken up by the cells, and the resulting intracellular pool was rapidly catabolized. The structures of the heparan sulfate chains in the three pools were very similar. Both the culture medium pool and the cell-associated fraction of heparan sulfate contained proteoheparan sulfate plus a polydisperse mixture of heparan chains which were attached to little, if any, protein. Pulse-chase data suggested that the free heparan sulfate chains were formed as a result of catabolism of the proteoglycan. When NH4Cl, added to inhibit lysosomal function, was present during either a labeling period or a chase period, the total catabolism of the heparan sulfate chains to monosaccharides plus free SO2-4 was blocked, but the conversion of the proteoglycan to free heparan sulfate chains continued at a reduced rate.  相似文献   

14.
Proteoglycans deposited in the basal lamina of [14C] glucosamine-labeled normal and [3H]glucosamine-labeled transformed mouse mammary epithelial cells grown on type I-collagen gels, were extracted in 4 M guanidinium chloride and cofractionated over Sepharose CL 4B. The heparan sulfate chains carried by these proteoglycans were isolated by treatment with alkaline borohydride, protease K, chondroitinase ABC, and cetylpyridinium chloride precipitation. Heparan sulfate isolated from transformed cell cultures consistently eluted from DEAE-cellulose at lower salt concentrations and was of smaller apparent Mr when chromatographed over Sepharose CL 6B, than heparan sulfate of normal cell cultures. Experiments using doubly labeled cultures ([3H]glucosamine and [35S]sulfate) demonstrated an approximately 30% reduction in the sulfate/hexosamine ratio in heparan sulfate derived from transformed cultures. Both N- and O-sulfate were decreased. The decreased Mr and decreased sulfation of heparan sulfate upon transformation appear sufficient to explain the altered heparan sulfate/chondroitin sulfate ratios previously observed in these cells. These changes may have implications for the molecular interactions in which these proteoglycans are normally engaged during basal lamina assembly, and cause the poor basal lamina formation displayed by these transformed cells.  相似文献   

15.
16.
We reported the presence of a new trisaccharide composed of two xylose and reducing terminal glucose residues linked to serine residues of bovine blood clotting factors VII and IX (Hase, S., Kawabata, S., Nishimura, H., Takeya, H., Sueyoshi, T., Miyata, T., Iwanaga, S., Takao, T., Shimonishi, Y., and Ikenaka, T. (1988) J. Biochem. (Tokyo) 104, 867-868). The present paper describes the detailed structural analysis of the trisaccharide. Glycopeptides were prepared from bovine factor IX by digestion with Pronase followed by purification by column chromatography. The trisaccharide was released from the protein by the beta-elimination reaction with hydrazine, and the reducing end of the sugar chain was tagged with 2-aminopyridine. The fluorescent pyridylamino derivative of the trisaccharide was purified by gel filtration and reversed-phase high performance liquid chromatography. The glycopeptides and pyridylamino-trisaccharide thus obtained were subjected to methylation study, 500-MHz 1H nuclear magnetic resonance spectroscopy, and periodate oxidation. Glucose and xylose belong to the D series by high performance liquid chromatography on a chiral column. From the results, the structure of the trisaccharide is proposed as: D-Xyl p alpha 1-3-D-Xyl p alpha 1-3-D-Glcp beta 1-O-Ser-53.  相似文献   

17.
The Asn-linked oligosaccharides of the pituitary hormone lutropin (LH) contain both sulfate and GalNAc. Bovine pituitary explants incorporate [3H]glucosamine, [3H]mannose, [3H]fucose, and [35S]sulfate into the Asn-linked oligosaccharides of LH. Endoglycosidase F or N-glycanase releases the [3H]glucosamine- and [3H]mannose-labeled oligosaccharides from the protein, which resolve on anion-exchange high pressure liquid chromatography as neutral (S-0), mono- (S-1), and disulfated (S-2) species. Based on sequential enzyme digestion, methylation, periodate oxidation, and nuclear magnetic resonance studies, the proposed structure for S-2 is as follows: formula see text. Sulfate is confined to position 3 or 4 of GalNAc based on periodate and methylation data and can be removed by methanolysis. The presence of beta-linked GalNAc at a position typically occupied by Gal has not previously been observed.  相似文献   

18.
Angiosperms possess a retaining trans-α-xylosidase activity that catalyses the inter-molecular transfer of xylose residues between xyloglucan structures. To identify the linkage of the newly transferred α-xylose residue, we used [Xyl-3H]XXXG (xyloglucan heptasaccharide) as donor substrate and reductively-aminated xyloglucan oligosaccharides (XGO–NH2) as acceptor. Asparagus officinalis enzyme extracts generated cationic radioactive products ([3H]Xyl·XGO–NH2) that were Driselase-digestible to a neutral trisaccharide containing an α-[3H]xylose residue. After borohydride reduction, the trimer exhibited high molybdate-affinity, indicating xylobiosyl-(1→6)-glucitol rather than a di-xylosylated glucitol. Thus the trans-α-xylosidase had grafted an additional α-[3H]xylose residue onto the xylose of an isoprimeverose unit. The trisaccharide was rapidly acetolysed to an α-[3H]xylobiose, confirming the presence of an acetolysis-labile (1→6)-bond. The α-[3H]xylobiitol formed by reduction of this α-[3H]xylobiose had low molybdate-affinity, indicating a (1→2) or (1→4) linkage. In NaOH, the α-[3H]xylobiose underwent alkaline peeling at the moderate rate characteristic of a (1→4)-disaccharide. Finally, we synthesised eight non-radioactive xylobioses [α and β; (1↔1), (1→2), (1→3) and (1→4)] and found that the [3H]xylobiose co-chromatographed only with (1→4)-α-xylobiose. We conclude that Asparagus trans-α-xylosidase activity generates a novel xyloglucan building block, α-d-Xylp-(1→4)-α-d-Xylp-(1→6)-d-Glc (abbreviation: ‘V’). Modifying xyloglucan structures in this way may alter oligosaccharin activities, or change their suitability as acceptor substrates for xyloglucan endotransglucosylase (XET) activity.  相似文献   

19.
The distribution of N-sulphate groups within fibroblast heparan sulphate chains was investigated. The detergent-extractable heparan sulphate proteoglycan from adult human skin fibroblasts, radiolabelled with [3H]glucosamine and [35S]sulphate, was coupled to CNBr-activated Sepharose 4B. After partial depolymerization of the heparan sulphate with nitrous acid, the remaining Sepharose-bound fragments were removed by treatment with alkali. These fragments, of various sizes, but all containing an intact reducing xylose residue, were fractionated on Sephacryl S-300 and the distribution of the 3H and 35S radiolabels was analysed. A decreased degree of sulphation was observed towards the reducing termini of the chains. After complete nitrous acid hydrolysis of the Sepharose-bound proteoglycan, analysis of the proximity of N-sulphation to the reducing end revealed the existence of an extended N-acetylated sequence directly adjacent to the protein-linkage sequence. The size of this N-acetylated domain was estimated by gel filtration to be approximately eight disaccharide units. This domain appears to be highly conserved, being present in virtually all the chains derived from this proteoglycan, implying the existence of a mechanism capable of generating such a non-random sequence during the post-polymeric modification of heparan sulphate. Comparison with the corresponding situation in heparin suggests that different mechanisms regulate polymer N-sulphation in the vicinity of the protein-linkage region of these chemically related glycosaminoglycans.  相似文献   

20.
Transport of heparan sulfate into the nuclei of hepatocytes   总被引:13,自引:0,他引:13  
Monolayer cultures of a rat hepatocyte cell line shown previously to accumulate a nuclear pool of free heparan sulfate chains that are enriched in sulfated glucuronic acid (GlcA) residues (Fedarko, N.S., and Conrad, H.E., (1986) J. Cell Biol. 587-599) were incubated with 35SO4(2-), and the rate of appearance of heparan [35S]sulfate in the nuclei was measured. Heparan [35S]sulfate began to accumulate in the nuclei 2 h after the administration of 35SO4(2-) to the cells and reached a steady state level after 20 h. Heparan [35S]sulfate was lost from the nuclei of prelabeled cells with a t1/2 of 8 h. Chloroquine did not inhibit the transport of heparan sulfate into the nucleus, but increased the t1/2 for the exit of heparan sulfate from the nucleus to 20 h and led to a doubling of the steady state level of nuclear heparan sulfate. Heparan [35S]sulfate which was obtained from the medium or from the cell matrix of a labeled culture and which contained only low levels of GlcA-2-SO4 residues was incubated with cultures of unlabeled cells, and the uptake of the exogenous heparan [35S]sulfate was studied. At 37 degrees C the cells took up proteoheparan [35S]sulfate and transported about 10% of the internalized heparan [35S]sulfate into the nucleus, where it appeared as free chains. The heparan [35S]sulfate isolated from the nucleus was enriched in GlcA-2-SO4 residues, whereas the heparan [35S]sulfate remaining in the rest of the intracellular pool showed a corresponding depletion in GlcA-2-SO4 residues. At 16 degrees C, where endocytosed materials do not enter the lysosomes, the cells also transported exogenous proteoheparan [35S]sulfate to the nucleus with similar processing. Thus, the metabolism of exogenous heparan sulfate by hepatocytes follows the same pathway observed in continuously labeled cells and does not involve lysosomal processing of the internalized heparan sulfate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号