首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The isolation and sugar uptake characteristics of protoplasts from maize ( Zea mays L.) endosperm-derived suspension cultures are described. In contrast with protoplasts from intact developing endosperm, which by virtue of their large size and high starch content are too fragile for sugar uptake experiments, suspension cultures yielded protoplasts capable of withstanding the necessary handling and centrifugations. Intactness of the protoplasts was demonstrated by dye exclusion or accumulation and latency of malate dehydrogenase activity. Uptake of radioactivity from [3H]-inulin did not increase with time, but that from [14C]-sugars increased over a wide range of external concentrations. Kinetics of fructose, glucose and sucrose uptake were biphasic, and the saturable components of uptake were eliminated by p -chloromercuribenzene sulfonate (PCMBS). Rates of uptake of sucrose and 1'-fluorosucrose were similar, confirming that hydrolysis by cell wall invertase contributes to sucrose uptake by the suspension cultures. The isolation of protoplasts from this tissue source will enable experimental access to plasma membrane sugar carriers which may exist in the intact maize endosperm.  相似文献   

2.
14C-Sugar uptake and incorporation into starch by slices of developing maize (Zea mays L.) endosperm were examined and compared with sugar uptake by maize endosperm-derived suspension cultures. Rates of sucrose, fructose, and d- and l-glucose uptake by slices were similar, whereas uptake rates for these sugars differed greatly in suspension cultures. Concentration dependence of sucrose, fructose, and d-glucose uptake was biphasic (consisting of linear plus saturable components) with suspension cultures but linear with slices. These and other differences suggest that endosperm slices are freely permeable to sugars. After diffusion into the slices, sugars were metabolized and incorporated into starch. Starch synthesis, but not sugar accumulation, was greatly reduced by 2.5 millimolar p-chloromercuribenzenesulfonic acid and 0.1 millimolar carbonyl cyanide m-chlorophenylhydrazone. Starch synthesis was dependent on kernel age and incubation temperature, but not on external pH (5 through 8). Competing sugars generally did not affect the distribution of 14C among the soluble sugars extracted from endosperm slices incubated in 14C-sugars. Competing hexoses reduced the incorporation of 14C into starch, but competing sucrose did not, suggesting that sucrose is not a necessary intermediate in starch biosynthesis. The bidirectional permeability of endosperm slices to sugars makes the characterization of sugar transport into endosperm slices impossible, however the model system is useful for experiments dealing with starch biosynthesis which occurs in the metabolically active tissue.  相似文献   

3.
4.
Stable cell suspension cultures have been established from immature endosperms of A69Y wild-type and opaque-2 maize (Zea mays L.). Cultured cells are capable of storage protein (zein) synthesis and accumulation throughout the growth period. Electrophoretic patterns of zeins show, for opaque-2 cells, the preferential inhibition of the accumulation of 22 kDa peptides typical of the mutation. Viable protoplasts, able to regenerate cell walls, as well as to divide and to express foreign DNA in transient expression experiments, can be obtained with high yields from cultures of both genotypes.Abbreviations 02 opaque-2 - wt wild-type - DAP days after pollination - PCV packed cell volume - f.w. fresh weight - SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - PEG polyethylene glycol - CAMV cauliflower mosaic virus - CAT chloramphenicol-acetyl-transferase  相似文献   

5.
6.
7.
The ability of individual amino acids to regulate nitrate uptakeand induction was studied in a Zea mays embryo cell line grownin suspension culture. The maize cells exhibited a marked preferencefor absorbing amino acids over nitrate when both were presentin culture medium. The addition of an individual amino acid(2 mM glutamine, glycine, aspartic acid, or arginine) to theculture medium with 1 mM nitrate completely inhibited nitrateuptake and resulted in a cycle of low levels of nitrate influxfollowed by efflux to the growth medium. Glutamine was readilyabsorbed by the cells and was particularly effective in supportingoptimum cell growth in the absence of an inorganic nitrogensource as compared to the three other amino acids evaluated.However, neither glutamine nor any of the remaining 19 proteinaceousamino acids appeared to be solely responsible for regulationof nitrate uptake and induction. The ability of amino acidsto regulate nitrate uptake and assimilation appears to be morerelated to their overall levels in the cell rather than to anaccumulation of a specific amino acid. Key words: Amino acids, nitrate uptake, maize, regulation, cell suspension culture  相似文献   

8.
The concentration dependent uptake of copper by cell suspension cultures of bush beans could be shown to be multiphasic. Whereas uptake periods of 1 and 4 h resulted in triphasic patterns, the third phase disappeared when the uptake period was extended to 24 h.  相似文献   

9.
Continuous cultures, established 10 days after pollination from endosperms of inbred A636 Zea mays (L.) were extracted 21 months later with aqueous ethanol. The solubilized proteins were analyzed by poly-acrylamide-sodium dodecyl sulfate gel electrophoresis. Two protein bands co-migrated with zein, the major storage protein of maize. Immunoblotting of the gel followed by incubation of the immobilized proteins with anti-zein IgG provided evidence that the polypeptides were in fact zein. Electron microscopic studies showed that the cultures contained cells with protein bodies as found in developing endosperms. The protein bodies could be isolated from the cultures and were shown to contain zein. We conclude that the long term cultures described here synthesize zein and deposit it in the form of protein bodies of the type found in developing endosperms. Thus, certain endosperm characteristics and the production of tissue-specific proteins are retained in prolonged culture.  相似文献   

10.
Summary Vigorously growing suspension cultures of normal, amylose-extender (ae) and waxy (wx) maize endosperm were established from near isogenic lines of maize inbred A636. The recovery of the ability to produce vigorous cultures of ae and wx endosperm by backcrossing demonstrate the genetic control of endosperm growth in vitro. Phenotypic expression of the endosperm mutants in culture was studied by examining the properties of starch accumulated in endosperm cultures and starch from developing and mature kernels of the same genotype. After 9 months in culture, the amylose contents of the starch in normal callus tissue and normal endosperm tissue were not significantly different, 28.2% and 31.7%, respectively. Starch granules from normal cultures and endosperm stained blue-black with iodine and were round to polygonal in shape. The starches of wx endosperm and callus cultures contained no amylose, and wx starch granules stained brown-orange with iodine. Although, wx starch granules were primarily round, a few granules with jagged edges were observed in starch samples isolated from cultures and kernels. The percent amylose in starch from ae callus was significantly lower than the amylose content of starch from ae endosperm tissue, 39.9% and 67.7%, respectively. Starch granules from ae endosperm and cultures were smaller than normal and wx starch granules. Irregular starch granules which are typical of ae endosperm were present in ae callus tissue, but were less frequently observed. We conclude that specific endosperm mutant phenotypes are expressed in vitro.Supported in part by the United States Department of Agriculture Competitive Grant 85-CRCR-1-1740. Contribution No. 94, Department of Horticulture. The Pennsylvania State University. Authorized for publication as paper No. 7373 in the journal series of the Pennsylvania Agricultural Experiment Station  相似文献   

11.
Anthocyanin and proteins as biochemical markers in maize endosperm cultures   总被引:1,自引:0,他引:1  
Endosperm maize cultures derived from a strain homozygous for all genes required for anthocyanin synthesis develop an intense pigmentation. Pigmenting ability is generally maintained in successive subcultures, altough colourless areas are frequently observed in pigmented cultures. The isolated colourless cell clusters show a growth rate higher than the coloured ones. These calli nevertheless do not lose the ability to synthesize anthocyanins, and in successive subcultures turn red again.The different growth rates associated with the ability of cells to accumulate pigments suggest the existence of different physiological states of the culture. To investigate this possibility we analyzed the polypeptide patterns of coloured and colourless cultures. SDS gel electrophoresis has demonstrated differences in soluble protein fractions, among which a 26 kD peptide, characteristic of pigmented tissues, has been evidenced. Zein, the major storage protein of maize endosperm is present, although at very low levels, both in pigmented and in unpigmented cultures, confirming that its synthesis occurs continuously in vitro.Abbreviations 2-4D 2,4-dichlorophenoxyacetic acid - SDS sodium dodecyl sulphate - PMSF Phenylmethyl sulphonyl fluoride - DAP days after pollination  相似文献   

12.
The development of enzyme patterns was followed in the course of: (a) the irreversible cell differentiation via division and expansion to maturity in the root tip and coleoptile of the intact seedlings, (b) the irreversible cell dedifferentation associated with induction and establishment of callus from the growing internodes, and (c) the growth cycle (proliferationstationary phase) in callus and cell-suspension cultures of maize (Zea mays L.). By measuring the activities of glycolytic, mitochondrial, microbody and hydrolytic enzymes cells proliferating in vivo and in vitro could be compared and changes related to cessation or resumption of cell division could be studied.Proliferating cells of callus and suspension cultures maintained by serial culture did not differ from those of the root meristem and coleoptile in the specific activities of hexokinase, phosphoglycerate kinase and phosphopyruvate hydratase. Proliferation in vitro resulted in an enormous increase in the ratio g glutamate-dehydrogenase/cytochrome-oxidase activity and in the level of acid-phosphatase activity, with concomitant drop in galactosidase and xylosidase activity. A 3-5-fold increase of alcohol-dehydrogenase, lactate-dehydrogenase and catalase activities was characteristic of dividing callus cells, while a ca. 100-fold increase in the fructofuranosidase-to-glucosidase activity ratio marked cell proliferation in suspension-cultured cells.Changing enzyme activities after cessation of proliferation were quite similar in root tips and coleoptiles, except those of alcohol dehydrogenase and catalase. The enzyme rearrangement during callus establishment and in the growth cycle of callus cultures was in most cases comparable to that in the intact tissues, while the changes from the dividing to the non-dividing cells in suspension cultures, in contrast, differed widely from those in the intact tissues and callus. Galactosidase and xylosidase were the only activities that showed a similar trend of changes in all the investigated, intact and in-vitro-grown cells.Thus, judged by the pattern of enzyme development, the cell suspension appears to be a unique system, virtually unrelated to the growing cells of the intact tissues. It is also very difficult to draw a definite distinction between the metabolic consequences of cell growth and enzyme modulations in cell suspensions as the cells adapt their metabolism to the environmental changes in liquid medium.  相似文献   

13.
In chlorophylkras soybean ( Glycine max L.) cell suspensioo cultures glucose uptake has been studied using the analogue 3-O-methyIglucose. Uptake could be distinguished into: a) a high affinity phase with Km= 0.06 m M and b) a low affinity phase with Km 2.0 m M . The uptake of glucose was accompanied by H+-cotransport with a stoichiometry of 0.3 H+ per molecule 3-O-methylglucose. Experiments in which sugar uptake was measured in the presence of various inhibitors of respiration and photosynthesis demonstrated that the glucose uptake system was dependent on energy metabolism and the ATP-content of the cells. Efflux experiments in the presence of the uncoupler dinitrophenol confirmed this energy dependency. Glucose uptake did not decrease before the ATP-content of the cells had decreased considerably.  相似文献   

14.
Steady state substrate kinetics and feedback regulation properties were determined for lysine-sensitive aspartate kinase (AK) purified from Black Mexican Sweet maize (Zea mays L.) cell suspension cultures. Two AK isoforms (AK Early and AK Late) were separated by two passages through an anion exchange column as the final steps in a procedure giving 1200-fold purification. Kinetic properties were determined for the major AK Late eluting isoform. Assays were conducted at the pH activity maximum (8.0) and with excess Mg2+ to favor a two-substrate reaction involving aspartate and complexed MgATP. AK catalyzed a sequential reaction in which MgATP and aspartate both bind to the enzyme complex before the ADP and aspartyl-phosphate products are released. The Km value calculated for MgATP was 0.43 millimolar and for aspartate was 1.04 millimolar. Cooperativity in substrate binding was not observed and was not induced by lysine. The lysine concentration required for 50% inhibition of AK activity was 7 micromolar. An apparent Hill coefficient of 1.4 indicated a minimum of two lysine-binding sites on the active AK complex. At nonsaturating substrate concentrations, lysine inhibition was characteristic of an S-parabolic, I-parabolic noncompetitive allosteric inhibitor. The parabolic inhibitor replot, Hill coefficients > 1, and the lack of substrate cooperativity were consistent with a model for multiple lysine-binding sites per active AK subunit. Similar kinetic properties were observed for the AK Early isoform.  相似文献   

15.
The N-oxides of pyrrolizidine alkaloids such as senecionine or monocrotaline are rapidly taken up and accumulated by cell suspension cultures obtained from plants known to produce pyrrolizidines, i.e. Senecio vernalis, vulgaris, viscosus (Asteraceae) and Symphytum officinale (Boraginaceae). The transport of the N-oxides into the cells is a specific and selective process. Other alkaloid N-oxides such as sparteine N-oxide are not taken up. Cell cultures from plant species which do not synthesize pyrrolizidine alkaloids are unable to accumulate pyrrolizidine N-oxides. The suitability of the pyrrolizidine N-oxides in alkaloid storage and accumulation is emphasized.  相似文献   

16.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

17.
The fusarium mycotoxin zearalenone was transformed in cell suspension cultures of Zea mays giving α- and β-zearalenol and the β-D-glu cos ides of zearalenone and α- and β-zearalenol. The structure of zearalenone-4-β-D-glucopyranoside was determined by liquid — chromatography-mass spectrometry and specific hydrolysis with β-glucosidase. α- and β-zearalenol and their glucosides were identified by co chromatography using tic and HPLC and glucosidase — treatment Up to 50% of the mycotoxin added was bound to a non extractable or “bound” residue fraction. After treating this residue by a sequential cell wall fractionation procedure, zearalenone was found to be bound mainly to starch, hemicellulose, and lignin fractions.  相似文献   

18.
Maize(Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil(DCB), a cellulose biosynthesis inhibitor. Cellulose de ficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared(FTIR) spectroscopy.Cell wall compositional analysis indicated that the cellulosede ficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-de ficient cell walls showed a fivefold increase in Klason-type lignin.Thioacidolysis/GC-MS analysis of cellulose-de ficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to shortterm DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.  相似文献   

19.
《Plant science》1986,45(2):111-117
Friable callus (type 2) was selected from three genotypes (A188, hybrid A188 × B73, and hybrid B73 × A188) of Zea mays L. The three genotypes of type 2 callus doubled in fresh weight after 1 week, and growth was better on N6 than on Murashige-Skoog (MS) medium. Type 2 callus of hybrid B73 × A188 was maintained in culture longer than A188 type 2 callus, and it regenerated higher numbers of plants than the other two genotypes. Type 2 callus of the hybrid B73 × A188 was used to establish cell suspensions. Suspension cells initially grew better on N6 than on MS medium, but after several months of subculture, cells in either N6 or MS medium grew at similar rates. Suspension cells were in mid-log phase by 5–7 days and in stationary phase by about 10 days depending on inoculum density. Growth rate was optimal when cells were transferred at mid-low phase and dry weight of the suspension cells increased at least 10-fold during a 10-day period. Suspension cells from 9-month-old cultures plated on solid medium regenerated plants at an efficiency similar to that of the friable type 2 callus but with more phenotypic abnormalities. Thus, cell suspensions derived from type 2 B73 × A188 callus, in culture for over 1 year, were capable of regenerating plants when 9-months old.  相似文献   

20.
《Plant science》1986,46(1):53-61
Cell cycle parameters of maize (Zea maysL cv Black Mexican Sweet) suspension cultures and root meristem cells were determined by pulse labelling with [3H]thymidine ([3H]TdR). Total cell cycle time for the suspension cultures was 27 h; 3 h in G1, 14 h in S, 6 h in G2, 2.2 h in prophase, 1 h in metaphase, 0.1 h in anaphase, and 0.7 h in telophase. Cell cycle durations in root meristem cells of Black Mexican Sweet (BMS) corn with and without B chromosomes in vivo were 20.0 h and 18.3h, respectively. Chemical and physical methods were used successfully to accumulate mitoses in the suspension cultures; compared to the untreated control, the mitotic index of the treated cultures was increased from 4 to 23% and the frequency of metaphase cells increased dramatically from 3 to 19%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号