首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mechanisms of TGF-beta signaling from cell membrane to the nucleus   总被引:126,自引:0,他引:126  
Shi Y  Massagué J 《Cell》2003,113(6):685-700
  相似文献   

2.
3.
Transforming growth factor-beta (TGF-beta) responsiveness in cultured cells can be modulated by TGF-beta partitioning between lipid raft/caveolae- and clathrin-mediated endocytosis pathways. The TbetaR-II/TbetaR-I binding ratio of TGF-beta on the cell surface has recently been found to be a signal that controls TGF-beta partitioning between these pathways. Since cholesterol is a structural component in lipid rafts/caveolae, we have studied the effects of cholesterol on TGF-beta binding to TGF-beta receptors and TGF-beta responsiveness in cultured cells and in animals. Here we demonstrate that treatment with cholesterol, alone or complexed in lipoproteins, decreases the TbetaR-II/TbetaR-I binding ratio of TGF-beta while treatment with cholesterol-lowering or cholesterol-depleting agents increases the TbetaR-II/TbetaR-I binding ratio of TGF-beta in all cell types studied. Among cholesterol derivatives and analogs examined, cholesterol is the most potent agent for decreasing the TbetaR-II/TbetaR-I binding ratio of TGF-beta. Cholesterol treatment increases accumulation of the TGF-beta receptors in lipid rafts/caveolae as determined by sucrose density gradient ultracentrifugation analysis of cell lysates. Cholesterol/LDL suppresses TGF-beta responsiveness and statins/beta-CD enhances it, as measured by the levels of P-Smad2 and PAI-1 expression in cells stimulated with TGF-beta. Furthermore, the cholesterol effects observed in cultured cells are also found in the aortic endothelium of atherosclerotic ApoE-null mice fed a high cholesterol diet. These results indicate that high plasma cholesterol levels may contribute to the pathogenesis of certain diseases (e.g., atherosclerosis) by suppressing TGF-beta responsiveness.  相似文献   

4.
5.
6.
TGF-beta receptors.   总被引:2,自引:0,他引:2  
  相似文献   

7.
Activin/nodal-like TGF-beta superfamily ligands signal through the type I receptors Alk4, Alk5, and Alk7, and are responsible for mediating a number of essential processes in development. SB-431542, a chemical inhibitor of activin/nodal signaling, acts by specifically interfering with type I receptors. Here, we use inhibitor-resistant mutant receptors to examine the efficacy and specificity of SB-431542 in Xenopus and zebrafish embryos. Treatment with SB-431542 eliminates Smad2 phosphorylation in vivo and generates a phenotype very similar to those observed in genetic mutants in the nodal signaling pathway. Inhibitor-resistant Alk4 efficiently rescues Smad2 signaling, developmental phenotype, and marker gene expression after inhibitor treatment. This system was used to examine type I receptor specificity for several activin/nodal ligands. We find that Alk4 can efficiently rescue signaling by a wide range of ligands, while Alk7 can only weakly rescue signaling by the same ligands. In whole embryos, nodal signaling during gastrulation can be rescued with Alk4, but not Alk7, while Alk5 can only mediate signaling by ligands expressed later in development. The combination of the ALK inhibitor SB-431542 with inhibitor-resistant ALKs provides a powerful set of tools for examining nodal/activin signaling during embryogenesis.  相似文献   

8.
9.
10.
Brown EC  Somanchi A  Mayfield SP 《Genome biology》2001,2(8):reviews1021.1-reviews10214
Chlorophyll precursors, photosynthetic electron transport, and sugars have all been shown to be involved in signaling from the chloroplast to the nucleus, suggesting the presence of multiple signaling pathways of coordination between these two cellular compartments.  相似文献   

11.
Steroid signaling in plants: from the cell surface to the nucleus.   总被引:9,自引:0,他引:9  
Steroid hormones are signaling molecules important for normal growth, development and differentiation of multicellular organisms. Brassinosteroids (BRs) are a class of polyhydroxylated steroids that are necessary for plant development. Molecular genetic studies in Arabidopsis thaliana have led to the cloning and characterization of the BR receptor, BRI1, which is a transmembrane receptor serine/threonine kinase. The extracellular domain of BRI1, which is composed mainly of leucine-rich repeats, can confer BR responsivity to heterologous cells and is required for BR binding. Although downstream components of BR action are mostly unknown, multiple genes whose expression are regulated by BRs have been identified and suggest mechanisms by which BRs affect cell elongation and division.  相似文献   

12.
TGF-beta signaling by Smad proteins   总被引:26,自引:0,他引:26  
  相似文献   

13.
Moustakas A  Heldin CH 《FEBS letters》2008,582(14):2051-2065
Transforming growth factor beta (TGF-beta) regulates cellular behavior in embryonic and adult tissues. TGF-beta binding to serine/threonine kinase receptors on the plasma membrane activates Smad molecules and additional signaling proteins that coordinately regulate gene expression or cytoplasmic processes such as cytoskeletal dynamics. In turn, the activity and duration of the Smad pathway seems to be regulated by cytoskeletal components, which facilitate the shuttling process that segregates Smad proteins in the cytoplasm and nucleus. We discuss mechanisms and models that aim at explaining the coordination between several components of the signaling network downstream of the TGF-beta signal.  相似文献   

14.
Control of MAP kinase signaling to the nucleus   总被引:11,自引:0,他引:11  
Kondoh K  Torii S  Nishida E 《Chromosoma》2005,114(2):86-91
MAP kinase (MAPK) signaling is among central signaling pathways that regulate cell proliferation, cell differentiation and apoptosis. As MAPK should transmit extracellular signals to proper regions or compartments in cells, controlling subcellular localization of MAPK is important for regulating fidelity and specificity of MAPK signaling. The ERK1/2-type of MAPK is the best characterized member of the MAPK family. In response to extracellular stimulus, ERK1/2 translocates from the cytoplasm to the nucleus by passing through the nuclear pore by several independent mechanisms. Sef (similar expression to fgf genes), a transmembrane protein, has been shown to be a regulator of subcellular distribution of ERK1/2. Sef binds to activated MEK1/2, the specific activator of ERK1/2, and tethers the activated MEK1/2/activated ERK1/2 complex to the Golgi apparatus and the plasma membrane. Thus, Sef blocks ERK1/2 signaling to the nucleus and allows signaling to the cytoplasm. Here we review recent findings on spatial regulation of MAPK, especially on nucleocytoplasmic trafficking of ERK1/2.  相似文献   

15.
16.
Ski/Sno and TGF-beta signaling   总被引:4,自引:0,他引:4  
Transforming growth factor-beta is a potent inhibitor of epithelial cell proliferation. Proteins involved in TGF-beta signaling are bona fide tumor suppressors and many tumor cells acquire the ability to escape TGF-beta growth inhibition through the loss of key signaling transducers in the pathway or through the activation of oncogenes. Recent studies indicate that there is a specific connection between the TGF-beta signaling pathway and the Ski/SnoN family of oncoproteins. We summarize evidence that Ski and SnoN directly associate with Smad proteins and block the ability of the Smads to activate expression of many if not all TGF-beta-responsive genes. This appears to cause abrogation of TGF-beta growth inhibition in epithelial cells.  相似文献   

17.
The ever-increasing complexity of TGF-beta signaling   总被引:4,自引:0,他引:4  
  相似文献   

18.
TGF-beta elicits context-dependent and cell-specific effects that often appear conflicting, such as stimulation or inhibition of growth, apoptosis or differentiation. It is puzzling how such a diverse array of responses can result from binding of TGF-beta to a single receptor complex that activates a seemingly straightforward signal-transduction scheme dependent on shuttling of Smad transducer proteins from the receptor to the nucleus. Here, we discuss a novel paradigm for TGF-beta signaling in endothelial cells in which the same ligand can induce opposing effects mediated by activation of two different classes of Smads through a chimeric receptor complex.  相似文献   

19.
Schistosoma mansoni: TGF-beta signaling pathways   总被引:1,自引:0,他引:1  
Schistosome parasites have co-evolved an intricate relationship with their human and snail hosts as well as a novel interplay between the adult male and female parasites. We review the role of the TGF-beta signaling pathway in parasite development, host-parasite interactions and male-female interactions. The data to date support multiple roles for the TGF-beta signaling pathway throughout schistosome development, in particular, in the tegument which is at the interface with the host and between the male and female schistosome, development of vitelline cells in female worms whose genes and development are regulated by a stimulus from the male schistosome and embryogenesis of the egg. The human ligand TGF-beta1 has been demonstrated to regulate the expression of a schistosome target gene that encodes a gynecophoric canal protein in the schistosome worm itself. Studies on signaling in schistosomes opens a new era for investigation of host-parasite and male-female interactions.  相似文献   

20.
Transforming growth factor-beta1 (TGF-beta1) action is known to be initiated by its binding to multiple cell surface receptors containing serine/threonine kinase domains that act to stimulate a cascade of signaling events in a variety of cell types. We have previously shown that TGF-beta1 and BMP-2 treatment of primary human osteoblasts (HOBs) enhances cell-substrate adhesion. In this report, we demonstrate that TGF-beta1 elicits a rapid, transient, and oscillatory rise in the intracellular Ca(2+) concentration, [Ca(2+)](i), that is necessary for enhancement of cell adhesion in HOBs but does not alter the phosphorylation state of Smad proteins. This rise in [Ca(2+)](i) in HOB is not observed in the absence of extracellular calcium or when the cells are treated with the L-type Ca(2+) channel blocker, nifedipine, but is stimulated upon treatment with the L-type Ca(2+) channel agonist, Bay K 8644, or under high K(+) conditions. The rise in [Ca(2+)](i) is severely attenuated after treatment of the cells with thapsigargin, a selective endoplasmic reticulum Ca(2+) pump inhibitor. TGF-beta1 enhancement of HOB adhesion to tissue culture polystyrene is also inhibited in cells treated with nifedipine. These data suggest that intracellular Ca(2+) signaling is an important second messenger of the TGF-beta1 signal transduction pathway in osteoblast function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号