首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Pan  D P Giedroc  J E Coleman 《Biochemistry》1989,28(22):8828-8832
Gene 32 protein (g32P), the single-stranded DNA binding protein from bacteriophage T4, contains 1 mol of Zn(II)/mol bound in a tetrahedral ligand field. 113Cd NMR studies of Cd-substituted wild-type and mutant (Cys166----Ser166) g32Ps show Cys77, Cys87, and Cys90 to provide three sulfur donor atoms as ligands to the metal ion [Giedroc, D. P., Johnson, B. A., Armitage, I. M., & Coleman, J. E. (1989) Biochemistry 28, 2410]. Proton NMR signals from the His and Trp side chains of the protein have been followed as a function of pH and metal ion removal by biosynthesizing the protein with amino acids carrying protons at specific positions in a background of perdeuteriated aromatic amino acids. Only one of the two pairs of His resonances (from His64 and His81) titrates over the pH range 8.0-5.9. The nontitrating His side chain is most likely ligated to the metal ion. Upon Zn(II) removal, 1H NMR spectra of the fully protonated g32P-(A + B) exhibit substantial signal broadening in several regions of the spectrum, while the His 2,4-1H resonances are broadened beyond detection. The 1H NMR spectral characteristics of the original protein are restored by reconstitution with stoichiometric Zn(II). The broadening of the 1H NMR signals is not due to oligomerization of the protein, since small-angle X-ray scattering experiments show that the average radius of gyration of the apo-g32P-(A + B) is 25.0 A and that of the reconstituted Zn(II)-g32P-(A + B) is 31.2 A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
113Cd and 31P NMR have been used to investigate the interactions of inhibitors with the metal ion of bovine carboxypeptidase A, using 113Cd as a replacement for the native zinc atom. In the absence of inhibitor and over the pH range 6-9, no 113Cd resonance is visible at room temperature. Upon lowering the temperature to 270 K, however, a broad resonance can be seen at 120 ppm. These results are discussed in terms of possible sources for this resonance modulation. Binding of low molecular weight inhibitors containing potential metal-coordinating moieties results in the appearance of a sharp 113Cd resonance. These inhibitors all bind to the metal ion, a fact which is reflected in the chemical shift of the cadmium resonance and, for L-phenylalanine phosphoramidate phenyl ester, by two-bond 113Cd-31P spin-spin coupling of 30 Hz in the 31P resonance of the bound inhibitor. For inhibitors that coordinate to the metal ion via oxygen, the 113Cd chemical shift is in the range 127-137 ppm, whereas for sulfur coordination there is a downfield shift of approximately 210 ppm. The complexes of 113Cd-substituted carboxypeptidase A with the D and L isomers of thiolactic acid are distinguished by a difference of 11 ppm in the chemical shift of their cadmium resonances. The enzyme complex formed with the macromolecular inhibitor from potatoes, which fills the S1 and S2 subsites, shows one or possibly two closely spaced broad 113Cd resonances. Both the chemical shift and the line width of the 113Cd resonances of the [113Cd]carboxypeptidase-inhibitor complexes give valuable structural and dynamic information about the enzyme active site.  相似文献   

3.
The lentil (LcH) and pea (PSA) lectins, which are members of the class of D-glucose/D-mannose binding lectins, are Ca2+ X Mn2+ metalloproteins that require the metal ions for their saccharide binding and biological activities. We have prepared a variety of Cd2+ derivatives of PSA and LcH, with Cd2+ in either the transition metal (S1) or calcium (S2) sites, or in both. Thus, Cd2+ X Zn2+, Cd2+ X Mn2+, and Ca2+ X Cd2+ derivatives were prepared, in addition to the Cd2+ X Cd2+ derivatives which we have recently reported. This is the first report of stable mixed metal Cd2+ complexes of lectins. The physical and saccharide binding properties of the Cd2+ derivatives of both lectins were characterized by a variety of physiochemical techniques and found to be the same as those of the corresponding native proteins. 113Cd NMR spectra of mono- and disubstituted 113Cd2+ complexes of LcH and PSA were recorded and compared with 113Cd NMR data for concanavalin A (ConA) (Palmer, A.R., Bailey, D.B., Behnke, W.D., Cardin, A.D., Yang, P.P., and Ellis, P.D. (1980) Biochemistry 19, 5063-5070). The data for the PSA and LcH derivatives were found to be very similar, indicating close homology of their metal ion binding sites. 113Cd resonances at 44.6 ppm and -129.4 ppm for 113Cd2+ X 113Cd2+ X LcH, and at 46.6 and -130.4 for the corresponding PSA derivative, are chemical shifts very similar to those observed for 113Cd2+ X 113Cd2+ X ConA. Assignment of the resonances to the transition metal (S1) and calcium (S2) sites were unambiguous since the Ca2+ X 113Cd2+ and 113Cd2+ X Zn2+ derivatives of both lectins showed single resonances characteristic of the S1 and S2 sites, respectively. The results indicate that, unlike ConA, 113Cd2+ binds tightly to PSA and LcH. Binding of monosaccharide to both lectins induce small (2 ppm) upfield shifts in their S2 113Cd resonances, in contrast to the larger shift (8 ppm) observed in ConA. The 113Cd2+ X Mn2+ complexes of PSA and LcH fail to show a 113Cd resonance characteristic of these derivatives, which provides evidence for the close proximity of the metal ions in the two proteins. The present findings indicate that the coordinating ligand atoms to the metal ions at the S1 and S2 sites in LcH, PSA, and ConA are the same.  相似文献   

4.
The RNA binding protein of 56 residues encoded by the extreme 3' region of the gag gene of Rauscher murine leukemia virus (MuLV) has been chemically synthesized by a solid-phase synthesis approach. Since the peptide contains a Cys26-X2-Cys29-X4-His34-X2-Cys39 sequence that is shared by all retroviral gag polyproteins which has been proposed to be a metal binding region, it was of considerable interest to examine the metal binding properties of the complete p10 protein. As postulated, p10 binds the metal ions Cd(II), Co(II), and Zn(II). The Co(II) protein shows a set of d-d absorption bands typical of a tetrahedral Co(II) complex at 695 (epsilon = 565 M-1 cm-1), 642 (epsilon = 655 M-1 cm-1), and 615 nm (epsilon = 510 M-1 cm-1) and two intense bands at 349 (epsilon = 2460 M-1 cm-1) and 314 nm (epsilon = 4240 M-1 cm-1) typical of Co(II)----(-)S- charge transfer. The ultraviolet absorption spectrum also indicates Cd(II) binding by the appearance of a Cd(II)----(-)S- charge-transfer band at 255 nm. The 113Cd NMR spectrum of 113Cd(II)-p10 reveals one signal at delta = 648 ppm. This chemical shift correlates well with that predicted for ligation of 113Cd(II) to three -S- from the three Cys residues of p10. The chemical shift of 113Cd(II)-p10 changes by only 4 ppm upon binding of d(pA)6, indicating that the chelate complex is little changed by oligonucleotide binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We examined the metal ion cofactor preference for MST3 (mammalian Ste20-like kinase 3) of the Ste20 serine/threonine kinase family. Four metal ions (Mg(+2), Mn(+2), Zn(2+), and Co(2+)) activate endogenous, exogenous, and baculovirus-expressed recombinant MST3 within the physiological concentration range. In contrast, Fe(+2) and Ca(+2) do not function as MST3 cofactors. Mn(2+), Co(2+), and Mg(2+)-dependent autophosphorylation of MST3 is mainly on threonine residue while Zn(2+)-stimulated MST3 autophosphorylation is on both serine and threonine residues. The distinct autophosphorylation pattern on MST3 suggests that MST3 may exert various types of kinase reactions depending on the type of metal ion cofactor used. To our knowledge, this is the first report showing Zn(2+) as the metal ion cofactor of a recombinant serine/threonine kinase.  相似文献   

6.
7.
A heavy metal ion sensor was constructed by cross-linking melanin onto the gold electrode of quartz crystal microbalance (QCM). A mercury ion sensitivity of 518+/-37 Hz/ppm was observed, a substantial increase in sensitivity compared to previous reports of 10-50 Hz/ppm with the limit of detection at 5 ppb. Detection of other metal ions including Sn(2+), Ge(4+), Li(+), Zn(2+), Cu(2+), Bi(3+), Co(2+), Al(3+), Ni(2+), Ag(+), and Fe(3+) were also performed. Unexpectedly, binding of Mn(7+), Pb(2+), Cd(2+), and Cr(3+) increased resonant frequencies. The surface profile of melanin thin film upon binding to metal ions was investigated by atomic force microscopy (AFM). Structural change of melanin upon binding to metal ions was characterized by circular dichroism and by infrared spectroscopy. The current study provides the first example of melanin-coated piezoelectric sensor showing high sensitivity and selectivity to metal ions.  相似文献   

8.
Gene 32 protein (g32P), the single-stranded DNA binding protein from bacteriophage T4, contains 1 mol of Zn(II)/mol of protein. This intrinsic zinc is retained within the DNA-binding core fragment, g32P-(A+B) (residues 22-253), obtained by limited proteolysis of the intact protein. Ultraviolet circular dichroism provides evidence that Zn(II) binding causes significant changes in the conformation of the peptide chain coupled with alterations in the microenvironments of tryptophan and tyrosine side chains. NMR spectroscopy of the 113Cd(II) derivative of g32P-(A+B) at both 44.4 and 110.9 MHz shows a single 113Cd resonance, delta 637, a chemical shift consistent with coordination to three of the four sulfhydryl groups in the protein. In vitro mutagenesis of Cys166 to Ser166 creates a mutant g32P that still contains 1 Zn(II)/molecule. This mutant protein when substituted with 113Cd(II) shows a 113Cd signal with a delta and a line width the same as those observed for the wild-type protein. Thus, the S-ligands to the metal ion appear to be contributed by Cys77, Cys87, and Cys90. Relaxation data suggest that chemical shift anisotropy is the dominant, but not exclusive, mechanism of relaxation of the 113Cd nucleus in g32P, since a dipolar modulation from ligand protons is observed at 44.4 MHz but not at 110.9 MHz. Complexation of core 113Cd g32P with d(pA)6 or Co(II) g32P with poly(dT) shows only minor perturbation of the NMR signal or d-d electronic transitions, respectively, suggesting that the metal ion in g32P does not add a ligand from the bound DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Calcium (Ca(2+)) is an essential cofactor for photosynthetic oxygen evolution. Although the involvement of Ca(2+) at the oxidizing side of photosystem II of plants has been known for a long time, its ligand interactions and mode of action have remained unclear. In the study presented here, (113)Cd magic-angle spinning solid-state NMR spectroscopy is used to probe the Ca(2+)-binding site in the water-oxidizing complex of (113)Cd(2+)-substituted PS2. A single NMR signal 142 ppm downfield from Cd(ClO(4))(2).2H(2)O was recorded from Cd(2+) present at the Ca(2+)-binding site. The anisotropy of the signal is small, as indicated by the absence of spinning side bands. The signal intensity is at its maximum at a temperature of -60 degrees C. The line width of the proton signal in a WISE (wide-line separation) two-dimensional (1)H-(113)Cd NMR experiment demonstrates that the signal arises from Cd(2+) in a solid and magnetically undisturbed environment. The chemical shift, the small anisotropy, and the narrow line of the (113)Cd NMR signal provide convincing evidence for a 6-fold coordination, which is achieved partially by oxygen and partially by nitrogen or chlorine atoms in otherwise a symmetric octahedral environment. The absence of a (113)Cd signal below -70 degrees C suggests that the Ca(2+)-binding site is close enough to the tetramanganese cluster to be affected by its electron spin state. To our knowledge, this is the first report for the application of solid-state NMR in the study of the membrane-bound PS2 protein complex.  相似文献   

10.
The kinetic effects of the binding of various metal ions (Ca(2+), Cd(2+), Co(2+), Mg(2+), Mn(2+), Sr(2+) and Zn(2+)) to apo bovine alpha-lactalbumin has been monitored by means of stopped-flow fluorescence spectroscopy. Our results show that the measured rate constant for the binding of metal ions to the Ca(2+)-site increases with increasing binding constant. This is, however, not the case for metal ions binding to the Zn(2+)-site. The binding experiments performed at different temperatures allowed us to calculate the activation energy for the transition from the metal-free to the metal-loaded state of the protein. These values do not depend on the nature of the metal ion but are correlated with the type of binding site. As a result, we were able to demonstrate that Mg(2+), a metal ion which was thought to bind to the Ca(2+)-site, shows the same binding characteristics as Co(2+) and Zn(2+) and therefore most likely interacts with the residues belonging to the Zn(2+)-binding site.  相似文献   

11.
Phospholipase A(2) coordinates Ca(2+) ion through three carbonyl oxygen atoms of residues 28, 30, and 32, two carboxyl oxygen atoms of residue Asp49, and two (or one) water molecules, forming seven (or six) coordinate geometry of Ca(2+) ligands. Two crystal structures of cadmium-binding acidic phospholipase A(2) from the venom of Agkistrodon halys Pallas (i.e., Agkistrodon blomhoffii brevicaudus) at different pH values (5.9 and 7.4) were determined to 1.9A resolution by the isomorphous difference Fourier method. The well-refined structures revealed that a Cd(2+) ion occupied the position expected for a Ca(2+) ion, and that the substitution of Cd(2+) for Ca(2+) resulted in detectable changes in the metal-binding region: one of the carboxyl oxygen atoms from residue Asp49 was farther from the metal ion while the other one was closer and there were no water molecules coordinating to the metal ion. Thus the Cd(2+)-binding region appears to have four coordinating oxygen ligands. The cadmium binding to the enzyme induced no other significant conformational change in the enzyme molecule elsewhere. The mechanism for divalent cadmium cation to support substrate binding but not catalysis is discussed.  相似文献   

12.
Optical and NMR methods are presented for the identification of cysteine ligands in Cd-substituted metalloproteins, in particular those containing zinc-fingerlike motifs, using Cd-substituted Desulfovibrio gigas rubredoxin (Cd-Rd) as a model [Cd(CysS)4]2- complex. The 113Cd NMR spectrum of Cd-Rd contains a single 113Cd resonance with a chemical shift position (723.6 ppm) consistent with tetrathiolate metal coordination. The proton chemical shifts of the four cysteine ligands were obtained from one-dimensional heteronuclear (1H-113Cd) multiple quantum coherence (HMQC) and total coherence spectroscopy (TOCSY)-relayed HMQC experiments. In addition, sequential assignments were made for two short cysteine-containing stretches of the polypeptide chain using a combination of homonuclear proton correlated spectroscopy, TOCSY, and nuclear Overhauser effect spectroscopy experiments, enabling sequence-specific heteronuclear 3J(1H beta-113Cd) coupling constants for each cysteine to be determined. The magnitude of these couplings (0-38 Hz) follows a Karplus-like dependence with respect to the H beta-C beta-S gamma-Cd dihedral angles, inferred from the crystal structure of the native protein. The difference absorption envelope (Cd-Rd vs. apo-Rd) reveals three distinct transitions with Gaussian-resolved maxima located at 213, 229, and 245 nm, which are paralleled by dichroic features in the corresponding difference CD and magnetic CD spectra. Based on the optical electronegativity theory of Jørgensen, the lowest energy transition has been attributed to a CysS-Cd(II) charge-transfer excitation (epsilon 245, 26,000 M-1 cm-1) with a molar extinction coefficient per cysteine of 6,500 M-1 cm-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The nucleocapsid (NC) protein (p15) of the human immunodeficiency virus (HIV) has been cloned and overproduced (under the control of a phage T7 promoter) in soluble form in an Escherichia coli host. The soluble NC protein is a fusion protein containing 15 amino acids from the T7 gene 10 and 7 amino acids from the HIV p24 protein at the N-terminus to make a protein of 171 amino acids. The plasmid containing the fusion gene is designated p15DF. A homogeneous product has been isolated from the induced cells and, when isolated under aerobic conditions, contains 0.3-0.5 mol of Zn/mol of protein and has only 2 titratable SH groups. Reduction and refolding in the presence of Zn(II) yields a protein containing 2.0 mol of Zn/mol of protein and 6 titratable SH groups. On the other hand, if the cells are sonicated in 2 mM CdCl2 and purified at pH 5.0, an unoxidized protein containing 2 mol of Cd/mol of protein is obtained. The Cd(II) ions can be exchanged with Zn(II), Co(II), or 113Cd(II). The Co(II)2 NC protein shows d-d electronic transitions at 695 nm [epsilon = 675 M-1 cm-1 per Co(II)] and 640 nm [epsilon = 825 M-1 cm-1 per Co(II)] compatible with regular tetrahedral geometry around both Co(II) ions. The Co(II)2 and Cd(II)2 NC proteins show intense charge-transfer bands in the near-UV, at 355 nm (epsilon = approximately 4000 M-1 cm-1) and 310 nm (epsilon = approximately 8000 M-1 cm-1) for the Co(II) protein and 255 nm (epsilon = approximately 10(4) M-1 cm-1) for the Cd(II)2 NC protein, compatible with -S- coordination. 113Cd NMR of the 113Cd(II)2 NC protein shows two 113Cd NMR signals at 659 and 640 ppm, respectively, each integrating to approximately 1 Cd(II) ion. The downfield chemical shifts suggest coordination of each 113Cd(II) ion to 3 sulfur donor atoms. The spectroscopic data fully support the prediction that the NC protein binds metal ions to each of the tandem repeats of the -Cys-X2-Cys-X4-His-X4-Cys- sequence contained in the N-terminal half of the molecule. 113Cd NMR shows, however, that the sites are not identical. Isolation of the NC protein under standard aerobic conditions results in oxidation of the sulfhydryl groups and loss of the coordinated Zn(II) ions, while preparation of the NC protein as the Cd(II) derivative at low pH protects the sulfhydryl groups from oxidation.  相似文献   

14.
Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR   总被引:1,自引:0,他引:1  
Chloride binding to alkaline phosphatase from Escherichia coli has been monitored by 35Cl NMR for the native zinc enzyme and by 113Cd NMR for two Cd(II)-substituted species, phosphorylated Cd(II)6 alkaline phosphatase and unphosphorylated Cd(II)2 alkaline phosphatase. Of the three metal binding sites per enzyme monomer, A, B, and C, only the NMR signal of 113Cd(II) at the A sites shows sensitivity to the presence of Cl-, suggesting that Cl- coordination occurs at the A site metal ion. From the differences in the chemical shift changes produced in the A site 113Cd resonance for the covalent (E-P) form of the enzyme versus the noncovalent (E . P) form of the enzyme, it is concluded that the A site metal ion can assume a five-coordinate form. The E-P form of the enzyme has three histidyl nitrogens as ligands from the protein to the A site metal ion plus either two water molecules or two Cl- ions as additional monodentate ligands. In the E . P form, there is a phosphate oxygen as a monodentate ligand and either a water molecule or a Cl- ion as the additional monodentate ligand. The shifts of the 113Cd NMR signals of the unphosphorylated Cd(II)2 enzyme induced by Cl- are very similar to those induced in the E-P derivative of the same enzyme, supporting the conclusion that the phosphoseryl residue is not directly coordinated to any of the metal ions. Specific broadening of the 35Cl resonance from bulk Cl- is induced by Zn(II)4 alkaline phosphatase, while Zn(II)2 alkaline phosphatase is even more effective, suggesting an influence by occupancy of the B site on the interaction of monodentate ligands at the A site. A reduction in this quadrupolar broadening is observed upon phosphate binding at pH values where E . P is formed, but not at pH values where E-P is the major species, confirming a specific interaction of Cl- at the A site, the site to which phosphate is bound in E . P, but not in E-P. For the zinc enzyme, a significant decrease in phosphate binding affinity can be shown to occur at pH 8 where one monomer has a higher affinity than the other.  相似文献   

15.
In this work five peptides with Cys-Xaa-Cys motif were studied including Ac-Cys-Gly-Cys-NH(2), Ac-Cys-Pro-Cys-Pro-NH(2), their N-unprotected analogues and the N-terminal fragment of metallothionein-3, Met-Asp-Pro-Glu-Thr-Cys-Pro-Cys-Pro-NH(2). All these peptides were found to be very effective ligands for Ni(2+), Zn(2+) and Cd(2+) ions. Potentiometric and spectroscopic (UV-Vis, CD and MCD) studies have proved that sulfur atoms are critical donors for the metal ions coordination. The amide nitrogen may participate in the metal ion binding only in the case when Gly is adjacent to Cys residues. Ac-Cys-Gly-Cys-NH(2) may serve as a low molecular weight model for cluster A, which is a binding unit of nickel ion in acetyl coenzyme A synthase. This bifunctional enzyme from anaerobic microorganisms catalyzes the formation of acetyl coenzyme A from CO, a methyl group donated by the corrinoid-iron-sulfur protein and coenzyme A. Other peptides studied in this work were Ac-Cys-Pro-Cys-Pro-NH(2) and Met-Asp-Pro-Glu-Thr-Cys-Pro-Cys-NH(2) originating from metallothionein sequence. These motifs are characteristic for the sequence of cysteine rich metallothionein-3 (MT-3) called also neuronal growth inhibitory factor (GIF). Cys-Pro-Cys-Pro fragment of protein was demonstrated to be crucial for the inhibitory activity of the protein.  相似文献   

16.
113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases   总被引:1,自引:0,他引:1  
113Cd NMR spectra of 113Cd(II)-substituted Escherichia coli alkaline phosphatase have been recorded over a range of pH values, levels of metal site occupancy, and states of phosphorylation. Under all conditions resonances attributable to cadmium specifically bound at one or more of the three pairs of metal-binding sites (A, B, and C sites) are detected. By following changes in both the 113Cd and 31P NMR spectra of 113Cd(II)2 alkaline phosphatase during and after phosphorylation, it has been possible to assign the cadmium resonance that occurs between 140 and 170 ppm to Cd(II) bound to the A or catalytic site of the enzyme and the resonance occurring between 51 and 76 ppm to Cd(II) bound to B site, which from x-ray data is located 3.9 A from the A site. The kinetics of phosphorylation show that cadmium migration from the A site of one subunit to the B site of the second subunit follows and is a consequence of phosphate binding, thus precluding the migration as a sufficient explanation for half-of-the-sites reactivity. Rather, there is evidence for subunit-subunit interaction rendering the phosphate binding sites inequivalent. Although one metal ion, at A site, is sufficient for phosphate binding and phosphorylation, the presence of a second metal ion at B site greatly enhances the rate of phosphorylation. In the absence of phosphate, occupation of the lower affinity B and C sites produces exchange broadening of the cadmium resonances. Phosphorylation abolishes this exchange modulation. Magnesium at high concentration broadens the resonances to the point of undetectability. The chemical shift of 113Cd(II) in both A and B sites (but not C site) is different depending on the state of the bound phosphate (whether covalently or noncovalently bound) and gives separate resonances for each form. Care must be taken in attributing the initial distribution of cadmium or phosphate in the reconstituted enzyme to that of the equilibrium species in samples reconstituted from apoenzyme. Both 113Cd NMR and 31P NMR show that some conformational changes consequent to metal ion or phosphate binding require several days before the final equilibrium species is formed.  相似文献   

17.
Cd-substituted forms of the Bacillus cereus metallo-beta-lactamases (BCII) were studied by perturbed angular correlation of gamma-rays (PAC) spectroscopy. At very low [Cd]:[apo-beta-lactamase] ratios, two nuclear quadrupole interactions (NQI) were detected. For [Cd]:[apo-beta-lactamase] ratios between 0.8 and 3.0, two new NQIs appear, and the spectra show that up to 2 cadmium ions can be bound per molecule of apoenzyme. These results show the existence of two interacting Cd-binding sites in BCII. The relative populations of the two NQIs found at low [Cd]:[apo-beta-lactamase] ratios yielded a 1:3 ratio for the microscopic dissociation constants of the two different metal sites (when only one cadmium ion is bound). X-ray diffraction data at pH 7.5 demonstrate that also for Zn(II) two binding sites exist, which may be bridged by a solvent molecule. The measured NQIs could be assigned to the site with three histidines as metal ligands (three-His site) and to the site with histidine, cysteine, and aspartic acid as metal ligands (Cys site), respectively, by PAC measurements on the Cys168Ala mutant enzyme. This assignment shows that cadmium ions preferentially bind to the Cys site. This is in contrast to the preference of Zn(II) in the hybrid Zn(II)Cd(II) enzyme, where an analysis of the corresponding PAC spectrum showed that Cd(II) occupied the Cys site, whereby Zn(II) occupied the site with three histidines. The difference between Zn(II) and Cd(II) in affinity for the two sites is combined with the kinetics of hydrolysis of nitrocefin for different metal ion substitutions (Zn(2)E, ZnE, Cd(2)E, CdE, and ZnCdE) to study the function of the two metal ion binding sites.  相似文献   

18.
The roundworm Caenorhabditis elegans adapted for survival at high concentrations of Cd(II) expresses two isoforms of metallothionein, CeMT-I and CeMT-II. To characterize one of these proteins CeMT-II was prepared as its Cd containing form by expressing its cDNA heterologously in Escherichia coli. The purified 63-amino-acid protein was identified as the desired product by ion-spray mass spectrometry and was found to resemble in most of its chemical and spectroscopic features the metallothioneins of other animal phyla. The recombinant protein contains a total of 18 cysteine residues and, as documented by electrophoresis and mass spectrometry, binds firmly six Cd ions through the cysteine's side chains. The (113)Cd NMR spectrum features six (113)Cd resonances. Their chemical shift positions between 615 and 675 ppm denote the existence of clusters of tetrahedrally coordinated cadmium thiolate complexes. The metal thiolate coordination dominates also the electronic far-UV absorption spectrum. It is characterized by a massive absorption profile with Cd thiolate shoulders at 255 and 235 nm. Upon replacement of Cd by Zn the profile was blue-shifted by 30 nm.  相似文献   

19.
Two-dimensional 1H-113Cd HSQC and relay HSQC experiments were performed on the 113Cd substituted DNA binding domain of the rat glucocorticoid receptor. The results of these experiments combined with sequence-specific assignments allowed the identification of all coordinating cysteines. It was found that C495 and not C500 is the fourth coordinating cysteine in the second zinc-finger. A signal at approximately 2 ppm previously assigned to a epsilon-CH3 of a methionine residue coordinating to a third, weakly bound, cadmium ion, was identified as the C443 beta proton ligating to the metal ion in the first zinc-finger. No indications were found for the presence of a previously suggested third metal ion binding site.  相似文献   

20.
Complexes between phosphoramidon (N-(alpha-rhamnopyranosyloxyhydroxyphosphinyl)-L-leucyl-L-tryptoph an) and zinc thermolysin and between phosphoramidon or N-phosphoryl-L-leucineamide and 113Cd-substituted thermolysin have been examined by 31P and 113Cd NMR spectroscopy. 113Cd resonances are observed at 168 and 152 ppm for the phosphoramidon and N-phosphoryl-L-leucineamide complexes, respectively. There are large but different chemical shift anisotropy contributions to the 113Cd line widths for the two complexes, which reflect the known structural differences for the zinc-enzyme complexes. 113Cd-31P spin-spin coupling is also seen and differs for the two cadmium complexes, being larger, 28 Hz, for the bidentate N-phosphoryl-L-leucineamide ligand than for the monodentate phosphoramidon, 16 Hz. Large changes in chemical shift, 7.5-10.9 ppm, are seen for the 31P resonances of the inhibitors upon binding to the enzyme reflecting direct phosphoryl-metal ligation. Chemical shift anisotropy is the dominant relaxation mechanism for the 31P nuclei at 9.4 T, while the dipole-dipole contribution seems to be unaffected by a change of solvent from H2O to D2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号