首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brain concentration of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) increased in rats maintained on restricted volume of low-protein or normal-protein diet, whereas these two agents decreased in rats fed low-protein diet ad libitum. In these two food-restricted groups brain 5-HT and 5-HIAA concentrations were not correlated with brain tryptophan hydroxylase activity, but the concentrations correlated closely with cerebral tryptophan concentrations. The cerebral tryptophan concentration in the two food-restricted groups was not consistent with the total or free tryptophan concentration in plasma. In these restricted rats cerebral tryptophan concentration was elevated, and, unlike the plasma tryptophan, it showed no diurnal variation. These results suggested that tryptophan uptake into the brain from plasma was enhanced by limiting food volume intake. Tryptophan uptake was increased by glucagon injection without changing the plasma tryptophan level, but injection of hydrocortisone or insulin had little or no effect on tryptophan concentration in either the plasma or brain.d-Glucose injection elevated plasma tryptophan concentration but decreased brain tryptophan concentration.  相似文献   

2.
The effects of L-tryptophan (50 mg/kg i.p.) on extracellular concentrations of tryptophan and the 5-hydroxytryptamine (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA) were determined in the rat striatum and cerebellum, regions with rich and poor 5-HT innervation, respectively. Determinations were on perfusates from dialysis probes in the brains of conscious, freely moving rats. The pharmacokinetic profiles of dialysate tryptophan after tryptophan load (peak concentration, time to peak concentration, area under curve, and half-life) in the two regions did not differ significantly. The dialysate 5-HIAA concentration in the striatum rose two- to threefold after the administration of tryptophan. Therefore, as 5-HIAA was undetectable in the cerebellum either before or after the administration of tryptophan, the increase of 5-HIAA in the striatum is unlikely to depend appreciably on its production within the cerebral vasculature or outside the brain or on its entering the striatum through a blood-brain barrier damaged by placement of the dialysis probe. Overall, the findings strengthen previous evidence that extracellular 5-HIAA concentrations determined by cerebral dialysis are a valid measure of the metabolism of 5-HT of brain neuronal origin.  相似文献   

3.
The effects of valproic acid (500 mg/kg, ip, 1 h prior to testing) on indole amine metabolism were studied in rats by measurement of the contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the cerebral hemisphere. Tryptophan and 5-HIAA levels were increased, whereas 5-HTP and 5-HT remained unchanged. Furthermore, valproic acid failed to alter the levels of 5-HTP and DOPA, 5-HT and DA, and 5-HIAA in animals pretreated, respectively, with 3-hydroxybenzyl hydrazine (a decarboxylase inhibitor), pargyline (a monoamine oxidase inhibitor), or probenecid (a compound which blocks 5-HIAA transport out of the brain and cerebrospinal fluid). These results militate against the possibility that valproic acid alters the rate of tryptophan hydroxylation or the synthesis of 5-HT. However they do support the concept that valproic acid increases brain 5-HIAA by inhibition of the transport mechanism which removes 5-HIAA from the brain.  相似文献   

4.
Portal-systemic shunting and hyperammonemia lead to an accumulation of the large neutral amino acids in brain and apparently alter transport of neutral amino acids across the blood-brain barrier. It has been proposed that portal-systemic shunting leads to a high brain concentration of glutamine, a product of cerebral ammonia detoxification, and thereby affects the transport of other neutral amino acids across the blood-brain barrier. To test this hypothesis, rats with a portacaval shunt were treated with L-methionine-dl-sulfoximine (MSO), an inhibitor of glutamine synthesis. Treatment with MSO resulted in lower concentrations of the neutral amino acids in brain of portacaval-shunted rats and a higher brain ammonia concentration, compared with untreated shunted rats. These results suggest that the accumulation of neutral amino acids in brain after portacaval shunt depends on the increased synthesis of glutamine in brain.  相似文献   

5.
Urea cycle disorders, hyperammonemia and neurotransmitter changes   总被引:1,自引:0,他引:1  
J P Colombo 《Enzyme》1987,38(1-4):214-219
In congenital urea cycle disorders, detoxification of ammonia is impaired, leading to hyperammonemia. Ammonia is the major component causing the acute neurological disturbances. It may influence the supply of substrate and its transport at the blood-brain barrier (BBB) which results in alterations in the synthesis and catabolism of neurotransmitters in the brain. In hyperammonemic rats, the uptake of tryptophan into the brain is increased with an augmented flux through the serotonin pathway. In the forebrain, glutamine as well as amino acids transported with the same L-carrier system, such as phenylalanine, tyrosine and tryptophan, are elevated. It is postulated that the increased transport of tryptophan at the BBB occurs in exchange with glutamine. Methionine sulfoximine (MSO) inhibits glutamine synthetase in the cerebral cortex. The activity drops from 5.85 +/- 0.38 to 1.07 +/- 0.37 mumol/min/g wet weight. Under MSO, the brain tryptophan uptake also decreased to 64.2 +/- 4.5% in hyperammonemic rats, to 54.1 +/- 8.0% in untreated hyperammonemic rats, whereas without MSO an increase of tryptophan uptake was observed. An effect of glutamine on tryptophan transport could also be demonstrated using brain microvessel preparations as a model for the BBB. Our findings indicate that preloading isolated microvessels with L-glutamine increases tryptophan uptake into the endothelia when L-glutamine is at concentrations found in brain homogenates under hyperammonemia. Since brain microvessels do not contain glutamine synthetase activity, enzymes from the gamma-glutamyl cycle may be involved in the glutamine-mediated tryptophan transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract: Liver failure, or shunting of intestinal blood around the liver, results in hyperammonemia and cerebral dysfunction. Recently it was shown that ammonia caused some of the metabolic signs of hepatic encephalopathy only after it was metabolized by glutamine synthetase in the brain. In the present study, small doses of methionine sulfoximine, an inhibitor of cerebral glutamine synthetase, were given to rats either at the time of portacaval shunting or 3–4 weeks later. The effects on several characteristic cerebral metabolic abnormalities produced by portacaval shunting were measured 1–3 days after injection of the inhibitor. All untreated portacaval-shunted rats had elevated plasma and brain ammonia concentrations, increased brain glutamine and tryptophan content, decreased brain glucose consumption, and increased permeability of the blood–brain barrier to tryptophan. All treated rats had high ammonia concentrations, but the brain glutamine content was normal, indicating inhibition of glutamine synthesis. One day after shunting and methionine sulfoximine administration, glucose consumption, tryptophan transport, and tryptophan brain content remained near control values. In the 3–4-week-shunted rats, which were studied 1–3 days after methionine sulfoximine administration, the effect was less pronounced. Brain glucose consumption and tryptophan content were partially normalized, but tryptophan transport was unaffected. The results agree with our earlier conclusion that glutamine synthesis is an essential step in the development of cerebral metabolic abnormalities in hyperammonemic states.  相似文献   

7.
Abstract— Streptozotocin-induced diabetes in rats reduces brain tryptophan but is without effect on the central levels of 5-hydroxytryptamine (5-HT) or 5-hydroxyindoleacetic acid (5-HIAA). The present work investigates the effect of diabetes on the accumulation of brain tryptophan, 5-HT and 5-HIAA in various brain regions following a systemic tryptophan load. The results indicate that diabetes severely restricts the uptake of tryptophan by brain but that the tryptophan that is accumulated is normally converted to 5-HT and 5-HIAA. Possible mechanisms which might explain the apparent resistance of 5-HT metabolism to decreased precursor levels in diabetics are discussed.  相似文献   

8.
Abstract— Four weeks after portacaval anastomosis in the rat. a profound change in the pattern of the plasma neutral ammo acids occurred. These changes were accompanied by marked regional changes in brain trvptophan. 5-HT (5-hydroxytryptamine) and 5-HIAA (5-hydroxyindoleacetic acid). Tryptophan was elevated in all the regions studied as was 5-HIAA. 5-Hydroxytryptamine was significantly elevated only in midbrain and medulla pons. A small but significant increase in free trvptophan concentration in plasma was seen in rats following portacaval anastomosis, but this elevation was insufficient in magnitude to account for thc changes in brain trvptophan. Administration of a solution containing equimolar concentrations of the three branched-chain amino acids, leucine. isoleucine and valine. caused a decrease in brain indoles towards normal levels. These results suggest that the altered plasma neutral amino acid pattern which accompanies portacaval anastomosis and its effect on competitive amino acid transport across the blood brain barrier is an important factor contributing to the raised levels of indoles in brain under these circumstances. The relationship of these results to the recently reported use of amino acid infusions in the treatment of hepatic encephalopathy is discussed.  相似文献   

9.
The effects of 1-h exposure to hypercapnia (PaCO2, 90-110 MMHg) on cerebral indole amine metabolism were studied in rats by measurement of cerebral hemisphere contents of tryptophan, 5-hydroxytryptophan (5-HTP), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA), 5-HIAA content was increased after 1-h exposure to hypercapnia, whereas tryptophan, 5-HTP, and 5-HT remained unchanged from control. The accumulation of 5-HTP after decarboxylase inhibition with 3-hydroxybenzyl hydrazine was increased in hypercapnic rats and indicated an increased activity of tryptophan hydroxylase. During the 1-h exposure to hypercapnia there was increased accumulation of 5-HT after monoamine oxidase inhibition with pargyline and increased accumulation of 5-HIAA arter probenecid. The results indicate an increased synthesis and degradation of indole amines in acute hypercapnia.  相似文献   

10.
《Life sciences》1995,57(19):PL285-PL292
Caffeine injected at doses of 20, 40 and 80 mg/kg increased brain levels of tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat brain. In view of a possible role of 5-HT in caffeine-induced depression the effects of repeated administration of high doses of caffeine on brain 5-HT metabolism are investigated in rats. Caffeine was injected at doses of 80 mg/kg daily for five days. Control animals were injected with sahne daily for five days. On the 6th day caffeine (80 mg/kg) injected to 5 day sahne injected rats increased brain levels of tryptophan, 5-HT and 5-HIAA. Plasma total tryptophan levels were not affected and free tryptophan increased. Brain levels of 5-HT and 5-HIAA but not tryptophan decreased in 5 day caffeine injected rats injected with sahne on the 6th day. Plasma total and free tryptophan were not altered hi these rats. Caffeine-induced increases of brain tryptophan but not 5-HT and 5-HIAA were greater in 5 day caffeine than 5 day sahne injected rats. The findings are discussed as repeated caffeine administration producing adaptive changes in the serotonergic neurons to decrease the conversion of tryptophan to 5-HT and this may precipitate depression particularly in conditions of caffeine withdrawal.  相似文献   

11.
Abstract: The relations of plasma concentrations of substances claimed to influence brain tryptophan concentration (total tryptophan, free tryptophan, large neutral amino acids) with the concentrations of tryptophan, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the forebrain were investigated in rats of different ages (from 8 days to 16 months after birth). In brain, tryptophan fell by 46%, whereas 5-HT rose by 20% between 8 and 40/42 days after birth. Thereafter, the levels of both tryptophan and 5-HT remained essentially constant. Brain 5-HIAA showed a more complex pattern, rising by 63% between 8 and 19 days, falling between 19 and 40/42 days, and then gradually rising until values at 16 months were significantly higher than those at 40/42 days. In plasma, the concentrations of free fatty acids, free and total tryptophan, and large neutral amino acids all decreased between 8 and 19 days and thereafter either remained constant or increased slowly, the exception being total tryptophan values, which showed large increases between 28/30 and 60/70 days. Also, the unidirectional uptake of tryptophan from blood to brain was determined using a carotid artery injection technique. Uptake values obtained using a tracer concentration of tryptophan in the injection solution decreased progressively with age. Kinetic analysis of the data in terms of the Michaelis-Menten equation for carrier-mediated transport indicated significantly lower values for Vmax and KD (a component for nonsaturable transport) in 6-month-old rats as compared to 19-day-old suckling rats, whereas Km values were the same at both ages. Detailed analysis of these results indicated that the age-related changes in brain tryptophan were largely explicable in terms of plasma free tryptophan in association with blood-brain transport characteristics; moderate differences in concentration of amino acids competing for transport were without apparent effect between 19 days and 16 months. The larger differences between 8 and 19 days after birth could be important.  相似文献   

12.
Abstract— Tryptophan loading of rats resulted in a continuous non-linear uptake of l -tryptophan from plasma into the brain. The optimum tryptophan load for increasing cerebral 5-hydroxytryptamine (5-HT) level was 25 mg/kg. Above this, there was a gradual decrease both in the levels and synthesis of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) as assessed from simultaneous intraperitoneal or intraventricular injections of l [14C]tryptophan. A 5–10 fold increase in cerebral tryptophan produced a limited stimulation of 5-HT synthesis. When the cerebral tryptophan level reached 1 ± 10 -4 , substrate inhibition in vivo of the tryptophan monooxygenase (tryptophan-5-hydroxylase) but not of the indoleamine-2,3-dioxygenase occurred. Cerebral synthesis of kynurenine increased linearly with increasing tryptophan load. At a plasma ratio of 50:1 tryptophan to kynurenine, tryptophan loading interfered with the entry of peripheral kynurenine. Tryptophan loading also increased the efflux of 5-hydroxyindoles from the brain. One hour after intraperitoneal injection of l -kynurenine sulfate (5 mg/kg) into rats, there was a shift in the plasma ratio of l -tryptophan to l -kynurenine to 4:1. In these rats, a 20% reduction of cerebral tryptophan was noted.  相似文献   

13.
The injection of caffeine (100 mg/kg, i.p.) into male rats acutely increased brain levels of trytophan, serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA). Blood levels of glucose, nonesterified fatty acids (NEFA) and insulin also increased, while those of the aromatic and branched-chain amino acids fell. Serum tryptophan levels either did not fall, or increased. Consequently, the serum ratio of trypthopahn to the sum of other large neutral amino acids (LNAA) increased. Less consistently noted were increases in serum free tryptophan levels. Brain tyrosine levels were not appreciably altered by caffeine, nor was the serum tyrosine ratio. In dose-response studies, 25 mg/kg of caffeine was the minimal effective dose needed to raise brain tryptophan, but only the 100 mg/kg dose elevated all three indoles in brain. In no experiments did caffeine, at any time or dose, alter brain levels of dopamine or norepinephrine. Caffeine thus probably raises brain tryptophan levels by causing insulin secretion, and thereby changing plasma amino acid levels to favor increased tryptophan uptake into brain. The rises in brain 5-HT and 5-HIAA may follow from the increase in brain tryptophan, although further data are required clearly to establish such a mechanism.  相似文献   

14.
The activity of the blood-brain neutral amino acid transport system is increased in rats infused with ammonium salts or rendered hyperammonemic by a portacaval anastomosis. This effect may be due to a direct action of ammonia or to some metabolic consequence of high ammonia levels, such as increased brain glutamine synthesis. To test these possibilities we evaluated the kinetic parameters of blood-brain transport of leucine and phenylalanine in control rats, in rats after continuous 24 h infusion of ammonium salts (NH4+ = 2.5 mmol X kg-1 X h-1), and in rats treated with methionine sulfoximine, an inhibitor of glutamine synthetase, before infusion of ammonium salts. In ammonia-infused rats without methionine sulfoximine treatment, the KD and Vmax of phenylalanine transport were increased, respectively, about 170% and 80% compared to controls, whereas the Km and Vmax of leucine transport were increased, respectively, about 100% and 200%. Electron microscopy demonstrated marked swelling of astrocytic processes around brain capillaries of ammonia-infused rats; however, capillary permeability to horseradish peroxidase apparently was not increased by ammonia infusion. Administration of methionine sulfoximine before ammonia infusion inhibited glutamine synthesis and prevented the changes in transport of leucine and phenylalanine, but apparently did not reverse the perivascular swelling. These results suggest that the ammonia-induced increase in the activity of transport of large neutral amino acids across the blood-brain barrier requires glutamine synthesis in brain, and is not a direct effect of ammonia.  相似文献   

15.
Abstract: Brain edema in hepatic encephalopathy has been associated with circulating ammonia that is metabolized to glutamine. We measured alterations in blood chemistry and brain regional specific gravity and ion and amino acid contents in models of simple hyperammonemia and liver failure induced by daily administrations of ammonium acetate (AAc) or thioacetamide (TAA), respectively. Serum and brain ammonia increased to similar levels (200 and 170% of control, respectively) in both experimental groups. Serum transaminase activities increased 10-fold in animals injected with TAA but were unchanged in animals given AAc injections. In both experimental groups glutamine was elevated in cerebral white matter, cerebral gray matter, and basal ganglia, whereas brain tissue specific gravity decreased in all brain regions, indicating edema formation. In the AAc group, we observed a decrease in glutamate and taurine contents concomitant with the development of brain edema. In these animals, cerebral gray matter specific gravity and taurine contents returned to control levels 24 h after the third AAc injection. TAA-injected animals demonstrated similar decreases in brain tissue specific gravity, whereas glutamine, glutamate, and taurine contents were all elevated. During hepatic encephalopathy, ammonia-induced changes in brain amino acid content may contribute to brain edema development.  相似文献   

16.
To assess the effects of external administration of L-tryptophan on the synthesis of serotonin and melatonin as well as on the immune function of Wistar rats, 300 mg of the amino acid were administered through an oral cannula either during daylight (08:00) or at night (20:00) for 5 days. Brain, plasma, and peritoneal macrophage samples were collected 4 h after the administration. The accumulation of 5-hydroxytryptophan (5-HTP) after decarboxylase inhibition was used to measure the rate of tryptophan hydroxylation in vivo. Circulating melatonin levels were determined by radioimmunoassay, and the phagocytic activity of macrophages was measured by counting, under oil-immersion phase-contrast microscopy, the number of particles ingested. The results showed a diurnal increase (p < 0.05) in the brain 5-HTP, serotonin (5-hydroxytryptamine, 5-HT), and 5-hydroxyindolacetic acid (5-HIAA) of the animals which had received tryptophan at 08:00 and were killed 4 h later. In the animals which received tryptophan during the dark period, the 5-HT declined but the 5-HT/5-HIAA ratio remained unchanged. There was also a significant increase (p < 0.05) in nocturnal circulating melatonin levels and in the innate immune response of the peritoneal macrophages in the animals which had received tryptophan at 20:00. The results indicated that the synthesis of serotonin and melatonin, as well as the innate immune response, can be modulated by oral ingestion of tryptophan.  相似文献   

17.
In both trained and untrained rats, exercise increased the plasma concentration ratio of aromatic amino acids to branched-chain amino acids which might favour entry of the aromatic amino acids into the brain. Exercise in trained rats did not change the brain concentration of 5-hydroxytryptamine but increased that of 5-hydroxyindole acetic acid. Exercise in the untrained rat increased the concentration of brain tryptophan and that of 5-hydroxytryptamine but that of 5-hydroxyindole acetic acid was unchanged. The increased concentration of 5-hydroxytryptamine in untrained rats might be involved in central fatigue.  相似文献   

18.
Ammonia, amino acids (AA), and middle molecules (MM) have been implicated in the pathogenesis of experimentally induced acute hepatic coma in the pig. Hemodialysis (HD) using either a low- (Cuprophan = CU) or a high-permeability (polyacrylonitrile = AN 69) membrane has demonstrated the role of MM. Selective hemodialysis (SHD) of AA or NH3 and MM was performed by adding either NH3 (group I) or AA (group II) to the dialysate during AN 69 HD; for MM, SHD only was performed by adding NH3 and AA to the dialysate (group III). In group I the brain levels of tyrosine were similar to those in undialyzed animals with decreased striatal dopamine and decreased norepinephrine in the midbrain only. Brain tryptophan was higher than normal, but brain levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid (5-HT, 5-HIAA) were within normal limits. In group II, despite an efficient NH3 clearance, brain NH3 levels were as high as in group I and did not correlate with plasma levels. Brain tyrosine (despite tyrosine overload of the dialysate) was lower than in group I; striatal dopamine decreased (but to a lesser extent than in group I), and norepinephrine was normal. Brain tryptophan was higher than normal, with an increase in brain 5-HT and 5-HIAA. In group III, results were similar to group I, except for a limited increase of 5-HT in the pons. Brain octopamine levels increased only in undialyzed and CU-HD animals, demonstrating a specific relation with MM. These experiments demonstrate the interrelationship between NH3 and neutral AA with regard to passage through the blood-brain barrier and to intracerebral metabolism.  相似文献   

19.
Abstract: Rats with portacaval shunts were used as a model of hepatic encephalopathy and compared to sham-operated controls. First, the changes in intermediary metabolites and amino acids in blood and whole brain were characterized and found to be similar at 4 and 7 weeks after shunting. Second, the effects of nutritional therapy on selected metabolites and tryptophan transport into brain were assessed in rats 5 weeks after surgery. Ordinary food was removed and the rats were treated with glucose given either by mouth or intravenously, or intravenous glucose plus branched chain amino acids. Several abnormalities in plasma amino acid concentrations were reversed by treatment. The abnormally high brain uptake index of tryptophan, a consequence of portacaval shunting, was not lowered by any of the treatment regimens; it was even higher in the groups given glucose by mouth and glucose plus amino acids. Calculated competition for entry of tryptophan, phenylalanine, and tyrosine into brain was unchanged (glucose plus amino aicds), or reduced (glucose alone). Brain glutamine content was brought to near normal by all treatments. Infusion of glucose plus branched chain amino acids normalized brain content of tryptophan, phenylalanine, and tyrosine, even though the brain uptake index of tryptophan was higher in this group. Thus, partial or complete reversal of several abnormalities found after portacaval shunting was achieved by removal of oral food and administration of glucose. The addition of branched chain amino acids to the glucose infusion restored brain content of three aromatic amino acids to near normal, by a mechanism which appeared to be unrelated to transport across the blood-brain barrier.  相似文献   

20.
The concentration of tryptophan in serum, and the levels of tryptophan, serotonin (5-HT), and 5-hydroxyindole-acetic acid (5-HIAA) in brain are substantially reduced in rats that consume for 6 weeks a diet in which corn is the only source of protein. Single injections of L-tryptophan (25, 50, or 100 mg/kg) cause dose-related increases in brain tryptophan, 5-HT, and 5-HIAA in corn-fed animals. At each dose, brain tryptophan content rises to a proportionately greater extent in corn-fed rats than in well-nourished controls, even though serum tryptophan concentrations attain higher levels in controls. This difference may reflect the greatly reduced serum concentrations in corn-fed rats of other large neutral amino acids that compete with tryptophan for uptake into the brain (tyrosine, phenylalanine, leucine, isoleucine, and valine). However, the substantial decrease in serum albumin levels also diminishes the binding of tryptophan to serum albumin; thus it is not yet possible to state which of these changes is responsible for the much greater increments in brain tryptophan observed in corn-fed rats after tryptophan injection. The fact that tryptophan administration rapidly restores brain 5-hydroxyindole levels in corn-fed animals suggests that the reductions in 5-HT and 5-HIAA levels associated with this type of malnutrition may be largely caused by inadequate availability of substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号