首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 923 毫秒
1.
Previously we isolated and characterized a placental anticoagulant protein (PAP or PAP-I), which is a Ca2+-dependent phospholipid binding protein [Funakoshi et al. (1987) Biochemistry 26, 5572] and a member of the lipocortin family [Funakoshi et al. (1987) Biochemistry 26, 8087]. In this study, three additional anticoagulant proteins (PAP-II, PAP-III, and PAP-IV) were simultaneously isolated from human placental homogenates prepared in the presence of 5 mM ethylenediaminetetraacetic acid. The isoelectric points of PAP-I, PAP-II, PAP-III, and PAP-IV were 4.8, 6.1, 5.9, and 8.1, respectively, and their apparent molecular weights were 32,000, 33,000, 34,000, and 34,500, respectively. Amino acid sequences of cyanogen bromide fragments of these proteins showed that PAP-III was a previously unrecognized member of the lipocortin family, while PAP-II was probably the human homologue of porcine protein II and PAP-IV was a derivative of lipocortin II truncated near the amino terminus. Comparative studies showed that all four proteins inhibited blood clotting and phospholipase A2 activity with potencies consistent with their measured relative affinities for anionic phospholipid vesicles. However, PAP-IV bound to phospholipid vesicles approximately 160-fold more weakly than PAP-I, while PAP-II and PAP-III bound only 2-fold and 3-fold more weakly. These results increase to six the number of lipocortin-like proteins known to exist in human placenta. The observed differences in phospholipid binding may indicate functional differences among the members of the lipocortin family despite their considerable structural similarities.  相似文献   

2.
Under continuous stress (CS) in rats, melanotrophs, the predominant cell-type in the intermediate lobe (IL) of the pituitary, are hyperactivated to secrete α-melanocyte-stimulating hormone and thereafter degenerate. Although these phenomena are drastic, the molecular mechanisms underlying the cellular changes are mostly unknown. In this study, we focused on the pancreatitis-associated protein (PAP) family members of the secretory lectins and characterized their expression in the IL of CS model rats because we had identified two members of this family as up-regulated genes in our previous microarray analysis. RT-PCR and histological studies demonstrated that prominent PAP-I and PAP-II expression was induced in melanotrophs in the early stages of CS, while another family member, PAP-III, was not expressed. We further examined the regulatory mechanisms of PAP-I and PAP-II expression and revealed that both were induced by the decreased dopamine levels in the IL under CS. Because the PAP family members are implicated in cell survival and proliferation, PAP-I and PAP-II secreted from melanotrophs may function to sustain homeostasis of the IL under CS conditions in an autocrine or a paracrine manner.  相似文献   

3.
We have purified and characterized poly(A) polymerases (PAPs) from Pisum sativum, Brassica juncea, and Zea mays. Through chromatography on DEAE-Sepharose and heparin-Sepharose, these PAPs copurified as a single enzyme along with RNPs that could provide RNA substrates for the enzyme. More extensive purification by chromatography on MonoQ resulted in the resolution of the PAPs into as many as three fractions. One of these (PAP-I) contained a 43-kDa polypeptide immunologically related to the yeast PAP, and two others (PAP-II and PAP-III) contained RNAs that could serve as substrates for polyadenylation. These fractions by themselves possessed little PAP activity, but mixtures containing combinations of these displayed substantial activity. Similar PAP factors (PAP-I and PAP-III) were identified after fractionation of extracts prepared from Brassica juncea and Zea mays. The factors from one plant were completely interchangeable with those from different plants. We conclude that the poly(A) polymerases present in vegetative plant tissues consist of more than one component. In this respect, they are substantially different from other reported plant, mammalian, and yeast PAPs.  相似文献   

4.
Mansouri S  Kutky M  Hudak KA 《PloS one》2012,7(5):e36369
Pokeweed antiviral protein (PAP) is a plant-derived N-glycosidase that exhibits antiviral activity against several viruses. The enzyme removes purine bases from the messenger RNAs of the retroviruses Human immunodeficiency virus-1 and Human T-cell leukemia virus-1. This depurination reduces viral protein synthesis by stalling elongating ribosomes at nucleotides with a missing base. Here, we transiently expressed PAP in cells with a proviral clone of HIV-1 to examine the effect of the protein on virus production and quality. PAP reduced virus production by approximately 450-fold, as measured by p24 ELISA of media containing virions, which correlated with a substantial decline in virus protein synthesis in cells. However, particles released from PAP-expressing cells were approximately 7-fold more infectious, as determined by single-cycle infection of 1G5 cells and productive infection of MT2 cells. This increase in infectivity was not likely due to changes in the processing of HIV-1 polyproteins, RNA packaging efficiency or maturation of virus. Rather, expression of PAP activated the ERK1/2 MAPK pathway to a limited extent, resulting in increased phosphorylation of viral p17 matrix protein. The increase in infectivity of HIV-1 particles produced from PAP-expressing cells was compensated by the reduction in virus number; that is, virus production decreased upon de novo infection of cells over time. However, our findings emphasize the importance of investigating the influence of heterologous protein expression upon host cells when assessing their potential for antiviral applications.  相似文献   

5.
Pokeweed antiviral proteins (PAPs) become novel therapeutic agents in relation to application in human viral diseases and cancer, as well as potent tools in plant system for defending viral infection. We have studied the expression characteristics of PAPs in pokeweed plants by western blot analysis. PAP-I was constitutively expressed in leaves, stems and roots of the pokeweed plant, while PAP-II was not expressed in roots. The expression of PAP-II began in May and then gradually increased with development of the plants. The PAP-II expression was induced and/or stimulated not only by biotic stresses, such as insect pests and viral infection, but also by abiotic stresses, like drought. Interestingly, low-light intensity was found to be more effective than high-light in the expression of both PAP-I and PAP-II. Our results suggest that PAP-II appears to have an additive effect in terms of protection of the plant against pathogens during summer-time when the plant actively grows and is attacked by various pathogens.  相似文献   

6.
Roday S  Saen-oon S  Schramm VL 《Biochemistry》2007,46(21):6169-6182
8-Vinyl-2'-deoxyadenosine (8vdA) is a fluorophore with a quantum yield comparable to that of 2-aminopurine nucleoside. 8vdA was incorporated into a 10-mer stem-tetraloop RNA (8vdA-10) structure for characterization of the properties of the base, 8-vinyladenine (8-vA), with respect to adenine as a substrate or inhibitor for ribosome-inactivating proteins. Ricin toxin A-chain (RTA) and pokeweed antiviral protein (PAP) catalyze the release of adenine from a specific adenosine on a stem-tetraloop (GAGA) sequence at the elongation factor (eEF2) binding site of the 28S subunit of eukaryotic ribosomes, thereby arresting translation. RTA does not catalyze the release of 8-vinyladenine from 8vdA-10. Molecular dynamics simulations implicate a role for Arg180 in oxacarbenium ion destabilization and the lack of catalysis. However, 8vdA-10 is an active site analogue and inhibits RTA with a Ki value of 2.4 microM. Adenine is also released from the second adenosine in the modified tetraloop, demonstrating an alternative mode for the binding of this motif in the RTA active site. The 8vdA analogue defines the specificities of RTA for the two adenylate depurination sites in a RNA substrate with a GAGA tetraloop. The rate of nonenzymatic acid-catalyzed solvolysis of 8-vinyladenine from the stem-loop RNA is described. Unlike RTA, PAP catalyzes the slow release of 8-vinyladenine from 8vdA-10. The isolation of 8-vA and its physicochemical characterization is described.  相似文献   

7.
8.
9.
美洲商陆抗病毒蛋白-Ⅱ基因的克隆和表达   总被引:3,自引:0,他引:3  
根据报道的cDNA序列,用RT-PCR的方法从美洲商陆夏季的叶片中克隆美洲商陆抗病毒蛋白-Ⅱ(pokeweedantiviralproteinⅡ,PAP-Ⅱ)基因。将PAP-Ⅱ基因克隆至表达载体pET-28a( )并在大肠杆菌中表达,SDS-PAGE电泳分析结果表明,PAP-Ⅱ蛋白在BL21(DE3)菌中获得表达,表达产物以不溶性包涵体形式存在,经过溶解包涵体、复性和BBSTNTA树脂柱亲和层析纯化,获得高纯度的PAP-Ⅱ蛋白。用非放射性基于ELISA方法检测经过复性纯化后PAP-Ⅱ蛋白和蓖麻毒素A链(RTA)在体外对HIV-1整合酶有较强的抑制活性,其IC50分别约为303μg/mL,220μg/mL。用MTT法分析PAP-Ⅱ蛋白的生物学活性,复性纯化后蛋白对HEP-G2和Hela细胞有细胞毒作用,IC50分别为93μg/mL,102μg/mL,说明了PAP-Ⅱ蛋白能抑制肿瘤细胞的生长。构建的PAP-Ⅱ表达系统所表达的蛋白经复性后具有生物学活性,为进一步研究PAP-Ⅱ的抗HIV-1机制和抗肿瘤作用奠定了基础。  相似文献   

10.
Pokeweed antiviral protein II (PAP-II) is a naturally occurring protein isolated from early summer leaves of the pokeweed plant (Phytolacca americana). PAP-II belongs to a family of ribosome-inactivating proteins which catalytically deadenylate ribosomal and viral RNA. The chemical modification of PAP-II by reductive methylation of its lysine residues significantly improved the crystal quality for X-ray diffraction studies. Hexagonal crystals of the modified PAP-II, with unit cell parameters a = b = 92.51 A, c = 79.05 A, were obtained using 1.8 M Na/K phosphate as the precipitant. These crystals contained one enzyme molecule per asymmetric unit and diffracted up to 2.4 A, when exposed to a synchroton source.  相似文献   

11.
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.  相似文献   

12.
13.
Pokeweed antiviral protein (PAP) from Phytolacca americana is a ribosome-inactivating protein (RIP) and an RNA N-glycosidase that removes specific purine residues from the sarcin/ricin loop of large rRNA, arresting protein synthesis at the translocation step. PAP is also a cap-binding protein and is a potent antiviral agent against many plant, animal, and human viruses. To elucidate the mechanism of RNA depurination, and to understand how PAP recognizes and targets various RNAs, the interactions between PAP and turnip mosaic virus genome-linked protein (VPg) were investigated. VPg can function as a cap analog in cap-independent translation and potentially target PAP to uncapped IRES-containing RNA. In this work, fluorescence spectroscopy and HPLC techniques were used to quantitatively describe PAP depurination activity and PAP-VPg interactions. PAP binds to VPg with high affinity (29.5 nm); the reaction is enthalpically driven and entropically favored. Further, VPg is a potent inhibitor of PAP depurination of RNA in wheat germ lysate and competes with structured RNA derived from tobacco etch virus for PAP binding. VPg may confer an evolutionary advantage by suppressing one of the plant defense mechanisms and also suggests the possible use of this protein against the cytotoxic activity of ribosome-inactivating proteins.  相似文献   

14.
15.
Ricin A-chain inhibitors resembling the oxacarbenium ion transition state   总被引:1,自引:0,他引:1  
Ricin toxin A-chain (RTA) is expressed by the castor bean plant and is among the most potent mammalian toxins. Upon activation in the cytosol, RTA depurinates a single adenine from position 4324 of rat 28S ribosomal RNA, causing inactivation of ribosomes by preventing the binding of elongation factors. Kinetic isotope effect studies have established that RTA operates via a D(N)*A(N) mechanism involving an oxacarbenium ion intermediate with bound adenine [Chen, X.-Y., Berti, P. J., and Schramm, V. L. (2000) J. Am. Chem. Soc. 122, 1609-1617]. On the basis of this information, stem-loop RNA molecules were chemically synthesized, incorporating structural features of the oxacarbenium ion-like transition state. A 10-base RNA stem-loop incorporating (1S)-1-(9-deazaadenin-9-yl)-1,4-dideoxy-1,4-imino-D-ribitol at the depurination site binds four times better (0.57 microM) than the 10-base RNA stem-loop with adenosine at the depurination site (2.2 microM). A 10-base RNA stem-loop with 1,2-dideoxyribitol [(2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran] at the depurination site binds with a Kd of 3.2 microM and tightens to 0.75 microM in the presence of 9-deazaadenine. A similar RNA stem-loop with 1,4-dideoxy-1,4-imino-D-ribitol at the depurination site binds with a K(d) of 1.3 microM and improves to 0.65 micro;M with 9-deazaadenine added. When (3S,4R)-4-hydroxy-3-(hydroxymethyl)pyrrolidine was incorporated at the depurination site of a 14-base RNA stem-loop, the Kd was 0.48 microM. Addition of 9-deazaadenine tightens the binding to 0.10 microM whereas added adenine increases the affinity to 12 nM. The results of this study are consistent with the unusual dissociative D(N)*A(N) mechanism determined for RTA. Knowledge of this intermediate has led to the design and synthesis of the highest affinity inhibitor reported for the catalytic site of RTA.  相似文献   

16.

Background

Ricin is a type II ribosome-inactivating protein (RIP) that potently inactivates eukaryotic ribosomes by removing a specific adenine residue at the conserved α-sarcin/ricin loop of 28S ribosomal RNA (rRNA). Here, we try to increase the specificity of the enzymatically active ricin A chain (RTA) towards human immunodeficiency virus type 1 (HIV-1) by adding a loop with HIV protease recognition site to RTA.

Methods

HIV-specific RTA variants were constructed by inserting a peptide with HIV-protease recognition site either internally or at the C-terminal region of wild type RTA. Cleavability of variants by viral protease was tested in vitro and in HIV-infected cells. The production of viral p24 antigen and syncytium in the presence of C-terminal variants was measured to examine the anti-HIV activities of the variants.

Results

C-terminal RTA variants were specifically cleaved by HIV-1 protease both in vitro and in HIV-infected cells. Upon proteolysis, the processed variants showed enhanced antiviral effect with low cytotoxicity towards uninfected cells.

Conclusions

RTA variants with HIV protease recognition sequence engineered at the C-terminus were cleaved and the products mediated specific inhibitory effect towards HIV replication.

General significance

Current cocktail treatment of HIV infection fails to eradicate the virus from patients. Here we illustrate the feasibility of targeting an RIP towards HIV-infected cells by incorporation of HIV protease cleavage sequence. This approach may be generalized to other RIPs and is promising in drug design for combating HIV.  相似文献   

17.
The rRNA depurination activities of five ribosome-inactivating proteins (RIPs) were compared in vitro using yeast and tobacco leaf ribosomes as substrates. All of the RIPs (pokeweed antiviral protein (PAP), dianthin 32, tritin, barley RIP and ricin A-chain) were active on yeast ribosomes. PAP and dianthin 32 were highly active and ricin A-chain weakly active on tobacco ribosomes, whereas tritin and barley RIP were inactive. PAP and dianthin 32 were highly effective in inhibiting the formation of local lesions caused by tobacco mosaic virus (TMV) on tobacco leaves, whereas tritin, barley RIP and ricin A-chain were ineffective. The apparent anomaly between the in vitro rRNA depurination activity, but lack of antiviral activity of ricin A-chain was further investigated by assaying for rRNA depurination in situ following the topical application of the RIP to leaves. No activity was detected, a finding consistent with the apparent lack of antiviral activity of this RIP. Thus, it is concluded that there is a positive correlation between RIP-catalysed depurination of tobacco ribosomes and antiviral activity which gives strong support to the hypothesis that the antiviral activity of RIPs works through ribosome inactivation.  相似文献   

18.
19.
We have isolated cDNA clones encoding a novel factor (PAP-I) that is a component of a multi-subunit poly(A) polymerase from pea seedlings. The encoded protein, when isolated from appropriately engineered Escherichia coli, was active as a poly(A) polymerase, either with an associated RNA binding cofactor (PAP-III) or with free poly(A) as an RNA substrate. The latter observation indicates that PAP-I is in fact a poly(A) polymerase. PAP-I bore a striking resemblance to an as yet uncharacterized cyanobacterial protein. This observation suggested a possible chloroplast localization for PAP-I. This hypothesis was tested and found to be substantiated; immunoblot analysis identified PAP-I in chloroplast but not nuclear extracts. Our results suggest that PAP-I is a component of the machinery that adds poly(A) to chloroplast RNAs.  相似文献   

20.
Ribosome inactivating proteins (RIPs) like ricin, pokeweed antiviral protein (PAP) and Shiga‐like toxins 1 and 2 (Stx1 and Stx2) share the same substrate, the α‐sarcin/ricin loop, but differ in their specificities towards prokaryotic and eukaryotic ribosomes. Ricin depurinates the eukaryotic ribosomes more efficiently than the prokaryotic ribosomes, while PAP can depurinate both types of ribosomes. Accumulating evidence suggests that different docking sites on the ribosome might be used by different RIPs, providing a basis for understanding the mechanism underlying their kingdom specificity. Our previous results demonstrated that PAP binds to the ribosomal protein L3 to depurinate the α‐sarcin/ricin loop and binding of PAP to L3 was critical for its cytotoxicity. Here, we used surface plasmon resonance to demonstrate that ricin toxin A chain (RTA) binds to the P1 and P2 proteins of the ribosomal stalk in Saccharomyces cerevisiae. Ribosomes from the P protein mutants were depurinated less than the wild‐type ribosomes when treated with RTA in vitro. Ribosome depurination was reduced when RTA was expressed in the ΔP1 and ΔP2 mutants in vivo and these mutants were more resistant to the cytotoxicity of RTA than the wild‐type cells. We further show that while RTA, Stx1 and Stx2 have similar requirements for ribosome depurination, PAP has different requirements, providing evidence that the interaction of RIPs with different ribosomal proteins is responsible for their ribosome specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号