首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neiman AM 《Genetics》2011,189(3):737-765
In response to nitrogen starvation in the presence of a poor carbon source, diploid cells of the yeast Saccharomyces cerevisiae undergo meiosis and package the haploid nuclei produced in meiosis into spores. The formation of spores requires an unusual cell division event in which daughter cells are formed within the cytoplasm of the mother cell. This process involves the de novo generation of two different cellular structures: novel membrane compartments within the cell cytoplasm that give rise to the spore plasma membrane and an extensive spore wall that protects the spore from environmental insults. This article summarizes what is known about the molecular mechanisms controlling spore assembly with particular attention to how constitutive cellular functions are modified to create novel behaviors during this developmental process. Key regulatory points on the sporulation pathway are also discussed as well as the possible role of sporulation in the natural ecology of S. cerevisiae.  相似文献   

2.
The ultrastructure of Diplodia maydis spores was studied in thin sections with a transmission electron microscope. Storage vacuoles were evenly distributed in the two cells. Some of the vacuoles that contained a dense osmiophilic sphere(s) were surrounded by a membrane, and had membranous aggregates around their periphery. The sport wall was composed of an electron-dense layer and an electron-translucent layer. An inner cytoplasmic membrane was present. Dormant and germinating spores were studied with scanning electron microscopy and also with a Si (Li) energy-dispersive X-ray analyzer. The dormant spore was ovate and usually two-celled with a central septum. Germination proceeded via a germ tube from the side of one end of the cell. Of several methods for preparation of specimens for X-ray analysis studied, freeze-dried spores mounted on carbon stubs and then further carbon coated gave the best results. X-ray analyses revealed that spore populations contained large amounts of Si, P, Cl, and K, smaller amounts of S and Ca, and trace amounts of Mg and Al. Analyses of single spores revealed high K and Cl and low P and Mg at one end of the cell with concomitant low K and Cl and high P and Mg in the central portion and other end of the cell. In two-celled germinating spores, high K and Cl occurred in the end of the nongerminating spore cell, whereas the germinating cell contained high P and Mg and low K and Cl. X-ray image maps revealed that K and Cl were located together at one end of the spore.  相似文献   

3.
When Bacillus megaterium spores germinate in the absence of an exogenous carbon source, the first minutes of germination are accompanied by production of large amounts (approximately 70 nmol/mg of dry spores) of acetate and much smaller amounts of pyruvate and lactate. The majority of these compounds are excreted into the medium. Exogenous pyruvate and alanine are also converted to CO2 and acetate by germinating spores, presumably by using the pyruvate dehydrogenase that is present in dormant spores. These data suggest that the 3-phosphoglyceric acid stores in the dormant spore and alanine generated by proteolysis early in germination can be catabolized to acetate during germination with production of large amounts of reduced nicotinamide adenine dinucleotide, acetyl coenzyme A, and adenosine 5'-triphosphate.  相似文献   

4.
Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM.  相似文献   

5.
The sequence of wall formation in spores of Fissidens limbatus Sullivant is as follows: The exine is formed around the protoplasts after the sporocyte has undergone meiosis. The fully enlarged spores then become coated by the perine; this is followed by intine formation. The source of the intine and exine appears to be from within the spore, but the perine is of an apparent exogenous origin. Ornamentation of the spore is due solely to deposition of the perine. Each spore originally has a single plastid. Plastids increase in number by fission, resulting in mature spores with numerous plastids with well differentiated lamellae.  相似文献   

6.
Nickas ME  Neiman AM 《Genetics》2002,160(4):1439-1450
Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Delta/ady3Delta asci that do form contain fewer than four spores. The sporulation defect in ady3Delta/ady3Delta cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Delta/ady3Delta cells. In mpc70Delta/mpc70Delta cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.  相似文献   

7.
Resting spore formation during short time-scale upwelling and its significance were investigated in the field and by a simple theoretical model. Field observations of spore formation ofLeptocylindrus danicus were made off Izu Peninsula, Japan. A rapid increase in ratio of resting spore to vegetative cell numbers indicated thatL. danicus formed resting spores quickly as a response to nutrient depletion in the upwelled water, although only a very low number of resting spores was found in the upwelling. A simple model was constructed to investigate the possible advantages of spore formation during short time-scale upwelling. This showed that there is a critical time-scale for resting spore formation to be advantageous. The nutrient depletion period of the upwelling off Izu was shorter than the critical time-scale determined by the model. Rapid-sinking of resting spores may increase further the critical time-scale, unless spores return with upwelling water. For short time-scale upwelling, the vegetative cell may be better suited than the resting spore for enduring a short period of nutrient depletion. Contribution from Shimoda Marine Research Center, University of Tsukuba, No. 475.  相似文献   

8.
9.
During sexual reproduction, the zygote must inherit exactly one centrosome (spindle pole body [SPB] in yeasts) from the gametes, which then duplicates and assembles a bipolar spindle that supports the subsequent cell division. Here, we show that in the fission yeast Schizosaccharomyces pombe, the fusion of SPBs from the gametes is blocked in polyploid zygotes. As a result, the polyploid zygotes cannot proliferate mitotically and frequently form supernumerary SPBs during subsequent meiosis, which leads to multipolar nuclear divisions and the generation of extra spores. The blockage of SPB fusion is caused by persistent SPB localization of Pcp1, which, in normal diploid zygotic meiosis, exhibits a dynamic association with the SPB. Artificially induced constitutive localization of Pcp1 on the SPB is sufficient to cause blockage of SPB fusion and formation of extra spores in diploids. Thus, Pcp1-dependent SPB quantity control is crucial for sexual reproduction and ploidy homeostasis in fission yeast.  相似文献   

10.
Sporulation in yeast requires that a modified form of chromosome segregation be coupled to the development of a specialized cell type, a process akin to gametogenesis. Mps1p is a dual-specificity protein kinase essential for spindle pole body (SPB) duplication and required for the spindle assembly checkpoint in mitotically dividing cells. Four conditional mutant alleles of MPS1 disrupt sporulation, producing two distinct phenotypic classes. Class I alleles of mps1 prevent SPB duplication at the restrictive temperature without affecting premeiotic DNA synthesis and recombination. Class II MPS1 alleles progress through both meiotic divisions in 30-50% of the population, but the asci are incapable of forming mature spores. Although mutations in many other genes block spore wall formation, the cells produce viable haploid progeny, whereas mps1 class II spores are unable to germinate. We have used fluorescently marked chromosomes to demonstrate that mps1 mutant cells have a dramatically increased frequency of chromosome missegregation, suggesting that loss of viability is due to a defect in spindle function. Overall, our cytological data suggest that MPS1 is required for meiotic SPB duplication, chromosome segregation, and spore wall formation.  相似文献   

11.
Formin proteins are nucleators of actin filaments and regulators of the microtubule cytoskeleton. As such, they play important roles in the development of yeast and other fungi. We show here that AgBnr2, a homologue of the ScBnr1 formin from the filamentous fungus Ashbya gossypii, localizes to the spindle pole body (SPB), the fungal analogue of the centrosome of metazoans. This protein plays an important role in the development of the typical needle-shaped spores of A. gossypii, as suggested by several findings. First, downregulation of AgBNR2 causes defects in sporangium formation and a decrease in the total spore number. Second, a fusion of AgBNR2 to GFP that is driven by the native AgBNR2 promoter is only visible in sporangia. Third, AgBnr2 interacts with a AgSpo21, a sporulation-specific component of the SPB. Furthermore, we provide evidence that AgBnr2 might nucleate actin cables, which are connected to SPBs during sporulation. Our findings add to our understanding of fungal sporulation, particularly the formation of spores with a complex, elongated morphology, and provide novel insights into formin function.  相似文献   

12.
Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB.  相似文献   

13.
While patterns of spore dispersal from single sources at short distances are fairly well known, information about ‘spore rain’ from numerous sources and at larger spatial scales is generally lacking. In this study, I sampled spore rain using a novel method consisting of 0.25–0.5 m2 cotton cloth traps at nine sites in the boreo‐nemoral vegetation zone in eastern Sweden during two seasons, using Sphagnum spores as a model. Traps were located in various landscapes (mainland, islands). Additional trapping was done in an arctic area (Svalbard) without spore production. Spore densities were tested against distance from the nearest source and area of sources (open peatlands) within different radii around each site (5, 10, 20, 50, 100, 200, 300, 400 km). The cloth method appeared reliable when accounting for precipitation losses, retaining approximately 20–60% of the spores under the recorded amounts of precipitation. Estimated spore densities ranged from 6 million m?2 and season within a large area source, via regional deposition of 50 000–240 000 spores m?2, down to 1000 m?2 at Svalbard. Spore rain for all sites was strongly related to distance from the nearest source, but when excluding samples taken within a source peatland, the amount of sources within 200 km was most important. Spores were larger at isolated island sites, indicating that a higher proportion originated from distant, humid areas. Immense amounts of Sphagnum spores are dispersed across regional distances annually in boreal areas, explaining the success of the genus to colonise nutrient poor wetlands. The detectable deposition at Svalbard indicates that about 1% of the regional spore rain has a trans‐ or intercontinental origin. The regional spore rain, originating from numerous sources in the landscape, is probably valid for most organisms with small diaspores and provides a useful insight in ecology, habitat restoration and conservation planning.  相似文献   

14.
目的: 提高地衣芽孢杆菌BF-002的芽孢产量,实现氮源流加过程的自动化控制,降低生产成本,为其他芽孢杆菌提高芽孢产率的研究提供一种思路。方法: 通过摇瓶做单因素实验,筛选最佳温度和碳氮源,在此基础上进行5 L发酵罐实验。初始添加不同浓度的氮源,探索芽孢形成与氮源的关系。提出相对氨基氮的概念,通过恒速补料、间歇补料和基于尾气CO2浓度反馈流加三个策略控制相对氨基氮浓度水平。采用Python语言编写计算机控制程序,实现基于尾气CO2浓度反馈流加策略的自动化控制。结果: 摇瓶筛选最佳温度及碳氮源分别为:37℃、葡萄糖、鱼粉蛋白胨、豆粕。上罐结果表明,相对氨基氮浓度越低芽孢率越高,采用基于尾气CO2浓度反馈流加能将相对氨基氮控制在8.42 mg/OD600水平,芽孢量可达4.25×109 cfu/mL。利用计算机程序自动控制低价氮源氯化铵的流加,可以使芽孢量达到1.87×1010 cfu/mL,是前期最优批次的4.4倍,同时降低原料成本。结论: 将相对氨基氮浓度控制在适宜水平可以得到芽孢量较高的培养液,自动流加氯化铵策略能降低生产成本并实现自动化控制,为研究芽孢杆菌产孢提供一种思路。  相似文献   

15.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

16.
Bacillus subtilis FtsY is a homolog of the alpha-subunit of mammalian signal recognition particle (SRP) receptor, and is essential for protein translocation and vegetative cell growth. An FtsY conditional null mutant (strain ISR39) can express ftsY during the vegetative stage but not during spore formation. Spores of ISR39 have the same resistance to heat and chloroform as the wild-type, while their resistance to lysozyme is reduced. Electron microscopy showed that the outer coat of spores was incompletely assembled. The coat protein profile of the ftsY mutant spores was different from that of wild-type spores. The amounts of CotA, and CotE were reduced in spore coat proteins of ftsY mutant spores and the molecular mass of CotB was reduced. In addition, CotA, CotB, and CotE are present in normal form at T(8) of sporulation in ftsY mutant cells. These results suggest that FtsY has a pivotal role in assembling coat proteins onto the coat layer during spore morphogenesis.  相似文献   

17.
Li J  Agarwal S  Roeder GS 《Genetics》2007,175(1):143-154
Spore formation in Saccharomyces cerevisiae requires the synthesis of prospore membranes (PSMs) followed by the assembly of spore walls (SWs). We have characterized extensively the phenotypes of mutants in the sporulation-specific genes, SSP2 and OSW1, which are required for spore formation. A striking feature of the osw1 phenotype is asynchrony of spore development, with some spores displaying defects in PSM formation and others spores in the same ascus blocked at various stages in SW development. The Osw1 protein localizes to spindle pole bodies (SPBs) during meiotic nuclear division and subsequently to PSMs/SWs. We propose that Osw1 performs a regulatory function required to coordinate the different stages of spore morphogenesis. In the ssp2 mutant, nuclei are surrounded by PSMs and SWs; however, PSMs and SWs often also encapsulate anucleate bodies both inside and outside of spores. In addition, the SW is not as thick as in wild type. The ssp2 mutant defect is partially suppressed by overproduction of either Spo14 or Sso1, both of which promote the fusion of vesicles at the outer plaque of the SPB early in PSM formation. We propose that Ssp2 plays a role in vesicle fusion during PSM formation.  相似文献   

18.
The spore is a dormant cell that is resistant to various environmental stresses. As compared with the vegetative cell wall, the spore wall has a more extensive structure that confers resistance on spores. In the fission yeast Schizosaccharomyces pombe, the polysaccharides glucan and chitosan are major components of the spore wall; however, the structure of the spore surface remains unknown. We identify the spore coat protein Isp3/Meu4. The isp3 disruptant is viable and executes meiotic nuclear divisions as efficiently as the wild type, but isp3∆ spores show decreased tolerance to heat, digestive enzymes, and ethanol. Electron microscopy shows that an electron-dense layer is formed at the outermost region of the wild-type spore wall. This layer is not observed in isp3∆ spores. Furthermore, Isp3 is abundantly detected in this layer by immunoelectron microscopy. Thus Isp3 constitutes the spore coat, thereby conferring resistance to various environmental stresses.  相似文献   

19.
The endospores formed by strains of type A Clostridium perfringens that produce the C. perfringens enterotoxin (CPE) are known to be more resistant to heat and cold than strains that do not produce this toxin. The high heat resistance of these spores allows them to survive the cooking process, leading to a large number of food-poisoning cases each year. The relative importance of factors contributing to the establishment of heat resistance in this species is currently unknown. The present study examines the spores formed by both CPE(+) and CPE(-) strains for factors known to affect heat resistance in other species. We have found that the concentrations of DPA and metal ions, the size of the spore core, and the protoplast-to-sporoplast ratio are determining factors affecting heat resistance in these strains. While the overall thickness of the spore peptidoglycan was found to be consistent in all strains, the relative amounts of cortex and germ cell wall peptidoglycan also appear to play a role in the heat resistance of these strains.  相似文献   

20.
AIMS: To determine the reason that spores of Bacillus species, in particular Bacillus subtilis, are able to form colonies with high efficiency on media with very high salt concentrations. METHODS AND RESULTS: Spores of various Bacillus species have a significantly higher plating efficiency on media with high salt concentration (termed osmoresistance) than do log or stationary phase cells. This spore osmoresistance is higher on richer media. Bacillus subtilis spores lacking various small, acid-soluble spore proteins (SASP) were generally significantly less osmoresistant than were wild-type spores, as shown previously (Ruzal et al. 1994). Other results included: (a) spore osmoresistance varied significantly between species; (b) the osmoresistance of spores lacking SASP was not restored well by amino acid osmolytes added to plating media, but was completely restored by glucose; (c) the osmoresistance of spores lacking SASP was restored upon brief germination in the absence of salt in a process that did not require protein synthesis; (d) significant amounts of amino acids generated by SASP degradation were retained within spores upon germination in a medium with high but not low salt; (e) slowing but not abolishing SASP degradation by loss of the SASP-specific germination protease (GPR) did not affect spore osmoresistance; (f) sporulation at higher temperatures produced less osmoresistant spores; and (g) spore osmoresistance was not decreased markedly by the absence of the stress sigma factor for RNA polymerase, sigmaB. CONCLUSIONS: Spore osmoresistance appears as a result of three major factors: (1) specific characteristics of spores and cells of individual species; (2) the precise sporulation conditions that produce the spores; and (3) sufficient energy generation by the germinating and outgrowing spore to allow the spore to adapt to conditions of high osmotic strength; the substrates for this energy generation can come from either the endogenous generation of amino acids by SASP degradation or from the spore's environment, in the form of a readily taken up and metabolized energy source such as glucose. SIGNFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of spore osmoresistance, a spore property that can be of major applied significance given the use of high osmotic strength with or without high salt as a means of food preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号