首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Methanosarcina strain 227 exhibited exponential growth on sodium acetate in the absence of added H(2). Under these conditions, rates of methanogenesis were limited by concentrations of acetate below 0.05 M. One mole of methane was formed per mole of acetate consumed. Additional evidence from radioactive labeling studies indicated that sufficient energy for growth was obtained by the decarboxylation of acetate. Diauxic growth and sequential methanogenesis from methanol followed by acetate occurred in the presence of mixtures of methanol and acetate. Detailed studies showed that methanol-grown cells did not metabolize acetate in the presence of methanol, although acetate-grown cells did metabolize methanol and acetate simultaneously before shifting to methanol. Acetate catabolism appeared to be regulated in response to the presence of better metabolizable substrates such as methanol or H(2)-CO(2) by a mechanism resembling catabolite repression. Inhibition of methanogenesis from acetate by 2-bromoethanesulfonate, an analog of coenzyme M, was reversed by addition of coenzyme M. Labeling studies also showed that methanol may lie on the acetate pathway. These results suggested that methanogenesis from acetate, methanol, and H(2)-CO(2) may have some steps in common, as originally proposed by Barker. Studies with various inhibitors, together with molar growth yield data, suggest a role for electron transport mechanisms in energy metabolism during methanogenesis from methanol, acetate, and H(2)-CO(2).  相似文献   

2.
Tetrachloroethylene (perchloroethylene, PCE) is a suspected carcinogen and a common groundwater contaminant. Although PCE is highly resistant to aerobic biodegradation, it is subject to reductive dechlorination reactions in a variety of anaerobic habitats. The data presented here clearly establish that axenic cultures of Methanosarcina sp. strain DCM dechlorinate PCE to trichloroethylene and that this is a biological reaction. Growth on methanol, acetate, methylamine, and trimethylamine resulted in PCE dechlorination. The reductive dechlorination of PCE occurred only during methanogenesis, and no dechlorination was noted when CH4 production ceased. There was a clear dependence of the extent of PCE dechlorination on the amount of methanogenic substrate (methanol) consumed. The amount of trichloroethylene formed per millimole of CH4 formed remained essentially constant for a 20-fold range of methanol concentrations and for growth on acetate, methylamine, and trimethylamine. These results suggest that the reducing equivalents for PCE dechlorination are derived from CH4 biosynthesis and that the extent of chloroethylene dechlorination can be enhanced by stimulating methanogenesis. It is proposed that electrons transferred during methanogenesis are diverted to PCE by a reduced electron carrier involved in methane formation.  相似文献   

3.
Abstract The effect of cadmium (Cd) on methane formation from methanol and/or H2–CO2 by Methanosarcina barkeri was examined in a defined growth medium and in a simplified buffer system containing 50 mM Tes with or without 2 mM dithiothreitol (DTT). No inhibition of methanogenesis by high concentrations of cadmium was observed in growth medium. Similarly, little inhibition of methanogenesis by whole cells in the Tes buffer system was observed in the presence of 430 μM Cd or 370 μM mercury (Hg) with 2 mM DTT. When the concentration of DTT was reduced to 0.4 mM, almost complete inhibition of methanogenesis from H2–CO2 and methanol by 600 μM Cd was observed. In the absence of DTT, 150 μM Cd inhibited methanogenesis from H2–CO2 completely and from methanol by 97%. Methanogenesis from H2–CO2 was more sensitive to Cd than that from methanol.  相似文献   

4.
When Methanosarcina sp. strain TM-1 is grown in medium in which both methanol and acetate are present, growth is biphasic, with methanol used as the primary catabolic substrate during the first phase. To better understand this phenomenon, we grew cells on methanol or on acetate or on both and examined the abilities of anaerobically washed cells to catabolize these substrates. Washed acetate-grown cells incubated with 10 mM acetate, 10 mM methanol, or both substrates together produced methane at initial rates of 325, 3, and 315 nmol min-1 mg of protein-1, respectively. Although the initial rate of methanogenesis from both substrates was nearly identical to the rate for acetate alone, after several hours of incubation the rate was greater for cells provided with both substrates. Studies with 14C-labeled methanol indicated that methanol was catabolized to methane at increasing rates by acetate-grown cells in a manner reminiscent of an induction curve, but only when cells were provided with acetate as a cosubstrate. Acetate was presumably providing energy and carbon for induction of methanol-catabolic enzymes. Methanol-grown cells showed a pattern of substrate utilization significantly different from that of acetate-grown cells, producing methane from 10 mM acetate, 10 mM methanol, or both substrates at initial rates of 10, 280, and 450 nmol min-1 mg of protein-1, respectively. There was significant oxidation of the methyl group of acetate during metabolism of both substrates. Cells grown on methanol-acetate and harvested before methanol depletion (methanol phase) showed catabolic patterns nearly identical to those of methanol-grown cells, including a low rate of methanogenesis from acetate. Cells harvested from methanol-acetate cultures in the acetate phase were capable of significant methanogenesis from either methanol or acetate alone, and the rate from both substrates together was nearly equal to the sum of the rates for the single substrates. When both 10 mM methanol and 10 mM acetate were presented to the acetate-phase cells, there was a preference for the methanol. These results are consistent with a model for regulation in Methanosarcina sp. strain TM-1 in which methanol represses acetate catabolism while methanol catabolism is inducible.  相似文献   

5.
Minimal growth of Methanosarcina barkeri strain DM occurred when sulfide was omitted fromthe growth medium, and addition of either sodium sulfate or coenzyme M to sulfide-depleted media failed to restore growth. Optimal growth occurred in the presence of 1.25 mM added sulfide, giving a molar growth yield (YCH4) of 4.4 mg (dry weight) of cells per mmol of CH4 produced. Increasing sulfide to 12.5 mM led to decrease in YCH4 (1.9 mg [dry weight]/mmol of CH4), in the specific growth rate and in be intracellular levels of adenosine triphosphate. However, the specific rate of methane production increased. The data suggested that at elevated sulfide levels (12.5 mM) the decrease in YCH4 might be a result of an increase in the relative energy needed for maintnenace and of uncoupling of growth from energy production.  相似文献   

6.
Studies on an anophthalmic strain of mice. VI. Lens and cup interaction   总被引:1,自引:0,他引:1  
In the embryology of the eye region in the anophthalmic strain of mice (ZRDCTCh), development proceeds normally until Day 10 (26 somites). At this time a lens is induced, but it is smaller in size and may be improperly centered in the optic cup. Where the lens is centered in relation to the optic cup determines whether microphthalmia or anophthalmia will occur. Also, we observed that optic cup formation is different in normal control strains.  相似文献   

7.
Although methanogenic archaea use B(12) extensively as a methyl carrier for methanogenesis, little is known about B(12) metabolism in these prokaryotes or any other archaea. To improve our understanding of how B(12) metabolism differs between bacteria and archaea, the gene encoding the ATP:co(I)rrinoid adenosyltransferase in Methanosarcina mazei strain G?1 (open reading frame MM3138, referred to as cobA(Mm) here) was cloned and used to restore coenzyme B(12) synthesis in a Salmonella enterica strain lacking the housekeeping CobA enzyme. cobA(Mm) protein was purified and its initial biochemical analysis performed. In vitro, the activity is enhanced 2.5-fold by the addition of Ca(2+) ions, but the activity was not enhanced by Mg(2+) and, unlike the S. enterica CobA enzyme, it was >50% inhibited by Mn(2+). The CobA(Mm) enzyme had a K(m)(ATP) of 3 microM and a K(m)(HOCbl) of 1 microM. Unlike the S. enterica enzyme, CobA(Mm) used cobalamin (Cbl) as a substrate better than cobinamide (Cbi; a Cbl precursor); the beta phosphate of ATP was required for binding to the enzyme. A striking difference between CobA(Se) and CobA(Mm) was the use of ADP as a substrate by CobA(Mm), suggesting an important role for the gamma phosphate of ATP in binding. The results from (31)P-nuclear magnetic resonance spectroscopy experiments showed that triphosphate (PPP(i)) is the reaction by-product; no cleavage of PPP(i) was observed, and the enzyme was only slightly inhibited by pyrophosphate (PP(i)). The data suggested substantial variations in ATP binding and probably corrinoid binding between CobA(Se) and CobA(Mm) enzymes.  相似文献   

8.
Minimal growth of Methanosarcina barkeri strain DM occurred when sulfide was omitted fromthe growth medium, and addition of either sodium sulfate or coenzyme M to sulfide-depleted media failed to restore growth. Optimal growth occurred in the presence of 1.25 mM added sulfide, giving a molar growth yield (YCH4) of 4.4 mg (dry weight) of cells per mmol of CH4 produced. Increasing sulfide to 12.5 mM led to decrease in YCH4 (1.9 mg [dry weight]/mmol of CH4), in the specific growth rate and in be intracellular levels of adenosine triphosphate. However, the specific rate of methane production increased. The data suggested that at elevated sulfide levels (12.5 mM) the decrease in YCH4 might be a result of an increase in the relative energy needed for maintnenace and of uncoupling of growth from energy production.  相似文献   

9.
Vibrio vulnificus is a marine bacterium associated with both primary septicemias and wound infections in humans. The lipopolysaccharides of a virulent and an avirulent strain of Vibrio vulnificus were compared with respect to their chemical constituents and electrophoretic characteristics. 2-Keto-3-deoxyoctonic acid, a normal constituent of the lipopolysaccharide of typical Enterobacteriaceae, was not found in the lipopolysaccharide of either strain. Hexadecenoate (C16:1) was the predominant fatty acid of the lipid A moiety of the lipopolysaccharides and of the membrane phospholipids of both strains. Hydroxy fatty acids composed 44% of the total fatty acids of the lipid A of the avirulent and 40% of those in the virulent strain. In addition, odd-numbered fatty acids were detected in both lipopolysaccharides. The electrophoretic profile was similar for both strains, but demonstrated no "ladder-like" pattern characteristic of "smooth" lipopolysaccharides. The result of this study showed no significant differences between the lipopolysaccharides of the virulent and avirulent strains of Vibrio vulnificus. The possible role for lipopolysaccharide in pathogenesis of Vibrio vulnificus infections is discussed.  相似文献   

10.
To determine the cellular localization of components of the methyltransferase system, we separated cell extracts of Methanosarcina strain G?1 into cytoplasmic and inverted-vesicle fractions. Measurements demonstrated that 83% of the methylene-tetrahydromethanopterin reductase activity resided in the cytoplasm whereas 88% of the methyl-tetrahydromethanopterin:coenzyme M methyltransferase (methyltransferase) was associated with the vesicles. The activity of the methyltransferase was stimulated 4.6-fold by ATP and 10-fold by ATP plus a reducing agent [e.g., Ti(III)]. In addition, methyltransferase activity depended on the presence of Na+ (apparent Km = 0.7 mM) and Na+ was pumped into the lumen of the vesicles in the course of methyl transfer from methyl-tetrahydromethanopterin not only to coenzyme M but also to hydroxycobalamin. Both methyl transfer reactions were inhibited by 1-iodopropane and reconstituted by illumination. A model for the methyl transfer reactions is presented.  相似文献   

11.
We examined the unitrophic metabolism of acetate and methanol individually and the mixotrophic utilization of these compounds by using detailed 14C-labeled tracer studies in a strain of Methanosarcina barkeri adapted to grow on acetate as the sole carbon and energy source. The substrate consumption rate and methane production rate were significantly lower on acetate alone than during the unitrophic or mixotrophic metabolism of methanol. Cell yields (in grams per mole of substrate) were identical during exponential growth on acetate and exponential growth on methanol. During unitrophic metabolism of acetate, the methyl moiety accounted for the majority of the CH4 produced, but 14% of the CO2 generated originated from the methyl moiety. This correlated with the concurrent reduction of equivalent amounts of the C-1 of acetate to CH4. 14CH4 was also produced from added 14CO2, although to a lesser extent than from reduction of the C-1 of acetate. During mixotrophic metabolism, methanol and acetate were catabolized simultaneously. The rates of 14CH4 and 14CO2 generation from [2-14C]acetate were logarithmic and higher in mixotrophic than in unitrophic cultures at substrate concentrations of 50 mM. A comparison of the oxidoreductase activities in cell extracts of the acetate-adapted strain grown on acetate and of strain MS grown on methanol or on H2 plus CO2 indicated that the pyruvate, α-ketoglutarate, and isocitrate dehydrogenase activities remained constant, whereas the CO dehydrogenase activity was significantly higher (5,000 nmol/min per mg of protein) in the acetate-adapted strain. These results suggested that a significant intramolecular redox pathway is possible for the generation of CH4 from acetate, that energy metabolism from acetate by M. barkeri is not catabolite repressed by methanol, and that the acetate-adapted strain is a metabolic mutant with derepressed CO dehydrogenase activity.  相似文献   

12.
Acetate assimilation pathway of Methanosarcina barkeri.   总被引:18,自引:11,他引:7       下载免费PDF全文
The pathway of acetate assimilation in Methanosarcina barkeri was determined from analysis of the position of label in alanine, aspartate, and glutamate formed in cells grown in the presence of [14C]acetate and by measurement of enzyme activities in cell extracts. The specific radioactivity of glutamate from cells grown on [1-14C]- or [2-14C]acetate was approximately twice that of aspartate. The methyl and carboxyl carbons of acetate were incorporated into aspartate and glutamate to similar extents. Degradation studies revealed that acetate was not significantly incorporated into the C1 of alanine, C1 or C4 of aspartate, or C1 of glutamate. The C5 of glutamate, however, was partially derived from the carboxyl carbon of acetate. Cell extracts were found to contain the following enzyme activities, in nanomoles per minute per milligram of protein at 37 degrees C: F420-linked pyruvate synthase, 170; citrate synthase, 0.7; aconitase, 55; oxidized nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, 75; and oxidized nicotinamide adenine dinucleotide-linked malate dehydrogenase, 76. The results indicate that M. barkeri assimilates acetate into alanine and aspartate via pyruvate and oxaloacetate and into glutamate via citrate, isocitrate, and alpha-ketoglutarate. The data reveal differences in the metabolism of M. barkeri and Methanobacterium thermoautotrophicum and similarities in the assimilation of acetate between M. barkeri and other anaerobic bacteria, such as Clostridium kluyveri.  相似文献   

13.
Two thermophilic strains, Methanosarcina thermophila TM-1 and Methanosarcina sp. SO-2P, were capable of mixotrophic growth on methanol and H2/CO2. Activated carbon was, however, found to be necessary to support good growth. Both strains used hydrogen and methanol simultaneously. When methanol was depleted, hydrogen utilization continued and methane was further produced with concurrent cell growth. UV epifluorescence microscopy revealed that aggregates of both strains exhibited a bright red fluorescence besides the usual blue-green fluorescence.  相似文献   

14.
15.
The 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing and methyl-viologen-reducing hydrogenase of the anaerobic methanogenic archaebacterium Methanosarcina barkeri strain Fusaro has been purified 64-fold to apparent electrophoretic homogeneity. The purified enzyme had a final specific activity of 11.5 mumol coenzyme F420 reduced.min-1.mg protein-1 and the yield was 4.8% of the initial deazaflavin-reducing activity. The hydrogenase exists in two forms with molecular masses of approximately 845 kDa and 198 kDa. Both forms reduce coenzyme F420 and methyl viologen and are apparently composed of the same three subunits with molecular masses of 48 kDa (alpha), 33 kDa (beta) and 30 kDa (gamma). The aerobically purified enzyme was catalytically inactive. Conditions for anaerobic reductive activation in the presence of hydrogen, 2-mercaptoethanol and KCl or methyl viologen were found to yield maximal hydrogenase activity. Determination of the apparent Km of coenzyme F420 and methyl viologen gave values of 25 microM and 3.3 mM, respectively. The respective turnover numbers of the high molecular mass form of the hydrogenase are 353 s-1 and 9226 s-1.  相似文献   

16.
17.
18.
A strain of Thermoactinomyces sp., TM9208, isolated from a soil sample in the Taipei area showed antagonistic activity to Gram positive bacteria but not to the Gram negative on the potato extract agar plate by the cross streaking method. The strain showed strong starch hydrolysis, beta type of hemolysis, brownish yellow growth on the potato extract agar and green on the nutrient agar. Its aerial mycelium, white to grayish white, was long and straight with short branches. The spores are single and have smooth surface. It is a good utilizer of starch, maltose and cellobiose as carbon source, but utilizes dulcitol, salicin, sucrose, rhamnose and sorbitol poorly.  相似文献   

19.
Tetrachloroethylene (PCE) is a toxic compound essentially used as a degreasing and dry-cleaning solvent. A methanogenic and sulfate-reducing consortium that dechlorinates and mineralizes high concentrations of PCE was derived from anaerobically digested sludge obtained from a waste water treatment plant (Bourg-en-Bresse, France). A methanogenic bacterium, strain FR, was isolated from this acclimated consortium. On the basis of morphological and physiological characteristics, strain FR was classified in the genus of Methanosarcina. Phylogeny analysis with the 16S rRNA gene sequence revealed that strain FR is highly related to Methanosarcina mazei and Methanosarcina frisia (99.6 and 99.5% identity, respectively). High concentrations (50-87 microM) of PCE were completely dechlorinated by strain FR cultures at the rate of 76 nM-mg protein(-1).day(-1). PCE dechlorination produced a nonidentified compound. The tracer experiments with [13C]PCE revealed that the product was nonchlorinated. Dechlorination of PCE to trichloroethylene was still active in the presence of boiled cell extract of the strain FR. However, no further dechlorination was observed. This result suggests that a cofactor rather than an enzymatic system is responsible for the first dechlorination of PCE. Dechlorination-active fractions purified from cell extracts on a XAD-4 column revealed the presence of F(420), F(430), and cobamides cofactors. This is the first report of the isolation of a methanogenic bacterium with the ability to dechlorinate high concentrations of PCE to a nonchlorinated product.  相似文献   

20.
A new acetotrophic marine methane-producing bacterium that was isolated from the methane-evolving sediments of a marine canyon is described. Exponential phase cultures grown with sodium acetate contained irregularly shaped cocci that aggregated in the early stationary phase and finally differentiated into communal cysts that released individual cocci when ruptured or transferred to fresh medium. The irregularly shaped cocci (1.9 ± 0.2 mm in diameter) were gram negative and occurred singly or in pairs. Cells were nonmotile, but possessed a single fimbria-like structure. Micrographs of thin sections showed a monolayered cell wall approximately 10 nm thick that consisted of protein subunits. The cells in aggregates were separated by visible septation. The communal cysts contained several single cocci encased in a common envelope. An amorphous form of the communal cyst that had incomplete septation and internal membrane-like vesicles was also present in late exponential phase cultures. Sodium acetate, methanol, methylamine, dimethylamine, and trimethylamine were substrates for growth and methanogenesis; H2-CO2 (80:20) and sodium formate were not. The optimal growth temperature was 35 to 40°C. The optimal pH range was 6.5 to 7.0. Both NaCl and Mg2+ were required for growth, with maximum growth rates at 0.2 M NaCl and 0.05 M MgSO4. The DNA base composition was 41 ± 1% guanine plus cytosine. Methanosarcina acetivorans is the proposed species. C2A is the type strain (DSM 2834, ATCC 35395).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号