首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Replication-competent forms of herpes simplex virus 1 (HSV-1) defective in the viral neurovirulence factor infected cell protein 34.5 (ICP34.5) are under investigation for use in the therapeutic treatment of cancer. In mouse models, intratumoral injection of ICP34.5-defective oncolytic HSVs (oHSVs) has resulted in the infection and lysis of tumor cells, an associated decrease in tumor size, and increased survival times. The ability of these oHSVs to infect and lyse cells is frequently characterized as exclusive to or selective for tumor cells. However, the extent to which ICP34.5-deficient HSV-1 replicates in and may be neurotoxic to normal brain cell types in vivo is poorly understood. Here we report that HSV-1 defective in ICP34.5 expression is capable of establishing a productive infection in at least one normal mouse brain cell type. We show that γ34.5 deletion viruses replicate productively in and induce cellular damage in infected ependymal cells. Further evaluation of the effects of oHSVs on normal brain cells in animal models is needed to enhance our understanding of the risks associated with the use of current and future oHSVs in the brains of clinical trial subjects and to provide information that can be used to create improved oHSVs for future use.Several types of replication-competent neuroattenuated herpes simplex viruses (HSVs) are currently being evaluated in clinical cancer trials for safety and therapeutic activity (32), as well as for vaccine development (20). A critical safety concern associated with the clinical use of these oncolytic HSVs (oHSVs) is their ability to enter, replicate in, and spread to a wide range of cell types in different regions of the nervous system. One potential complication resulting from invasion of the central nervous system by HSV is herpes simplex encephalitis (HSE), an infection that causes lifelong neurological damage or death. A limited number of genes have been demonstrated to contribute to the virus''s ability to trigger HSE. The viral gene γ34.5 encodes the neurovirulence protein infected cell protein 34.5 (ICP34.5) (29). Viruses lacking the γ34.5 gene (e.g., R3616 and 1716) were found to be 5 logs less neurovirulent than wild-type strains of HSV-1 (4, 19, 36), as quantified by the intracranial LD50, i.e., the lethal dose in 50% of mice inoculated intracerebroventricularly with the virus. The basis for this neuroattenuation was initially reported to be the inability of the γ34.5 deletion viruses to infect or replicate in brain cells (4). Subsequent immunohistochemical studies on infected brain tissue of intracerebroventricularly inoculated mice suggested that γ34.5 deletion viruses retained the ability to infect a wide range of brain cell types and to replicate in and, by day 7, destroy ependymal cells (ECs) (16, 21).To create a more neuroattenuated and thus safer virus, the virus G207 was constructed from the γ34.5 deletion virus R3616 by insertional mutagenesis of the UL39 gene (25). The UL39 gene encodes the large subunit of the viral ribonucleotide reductase (vRR) (29). Cellular ribonucleotide reductase is a DNA synthetic enzyme which is of low abundance in quiescent cells but is critical for the synthesis of DNA precursors and is thus abundant in mitotically active cells such as cancer cells. Based on the phenotype of viruses mutated in the vRR alone (13), this double-deletion virus lacking both ICP34.5 and vRR expression is predicted to restrict viral replication to cancer cells expressing cellular RR at levels sufficient to support viral replication (25). In preclinical studies with mice, inoculation with G207 via the intracerebroventricular route failed to destroy the EC layer at 5 days postinoculation (34). These studies supported the concept that a double-deletion virus may be safer in clinical trials than a virus lacking only ICP34.5 expression.To test the hypothesis that productive replication of γ34.5 deletion viruses is restricted to cancer cells, we developed sensitive methods to examine the ability of γ34.5 deletion viruses, with either intact or mutated vRR, to replicate productively in vivo and to complete the multistep process of virion assembly and egress.Common to most models of HSV virion assembly and egress is the observation that capsid proteins translated in the cytoplasm are imported to the nucleus, where a capsid shell is assembled and viral DNA is subsequently packaged. Capsids containing viral DNA are distinguished by an electron-dense (dark) center, whereas capsids lacking viral DNA contain a core protein visible by electron microscopy (EM) often as an inner concentric circle. In subsequent steps, DNA-filled capsids acquire an envelope by budding through the inner nuclear membrane into the perinuclear space. Capsids observed between the inner and outer nuclear membranes have an envelope and tegument and resemble mature extracellular virions (10).Consensus is lacking on the specific sequence of subsequent stages of viral egress, and multiple pathways may exist (3, 18, 24, 30). In the subsequent step of the envelopment-deenvelopment-reenvelopment model (18, 30), enveloped capsids in the perinuclear space lose their envelope by fusion with the outer nuclear membrane as the capsids enter the cytoplasm. In this model, progeny viruses are thus present in the cytoplasm as naked capsids. Cytoplasmic naked capsids acquire their mature envelope as they bud into a cytoplasmic organelle (e.g., a Golgi body).According to an alternative model, enveloped capsids move within the perinuclear space into the endoplasmic reticulum (ER), which is continuous with the perinuclear space (33). From this space, enveloped capsids, individually or in groups, bud off within a vesicle membrane characteristic of the outer nuclear membrane/ER. Within these vesicles, enveloped virions are transported through the cytoplasm. In a final step common to both models, the cytoplasmic vesicle releases mature enveloped virions into the extracellular space by fusing with the cell membrane.ECs are an ideal cell type for these studies due to their distinct morphology and location (described below) and their reported function as neural stem cells (15). We reasoned that since mitotic activity is the reported basis for the productive replication and selectivity of γ34.5 deletion viruses in cancer cells (9, 34), and ECs may be mitotically active, if any normal brain cell type were to support productive replication of γ34.5 deletion viruses, ECs would be the most likely candidate.ECs line the cerebral ventricles, acting as a semipermeable barrier between the brain parenchyma and the cerebrospinal fluid (CSF) in the ventricles (7, 12). Their location thus makes them easily exposed to the virus via intraventricular injections. Their location, combined with their morphologically distinct cuboid shape with kinocilia and microvilli that protrude into the CSF, allows them to be easily excised and recognized under both light microscopy and EM.Here we report the results of a side-by-side comparative study evaluating whether a double-deletion virus similar to G207 and a virus lacking only ICP34.5 expression differ from each other and from a wild-type virus in the ability to infect and replicate productively in ECs of the mouse brain in vivo. The results of these studies are consistent with results of other studies in that they demonstrate that viruses similar to those used in clinical trials (e.g., G207, HSV1716) have a greatly attenuated ability to replicate compared to that of a wild-type virus. However, our data also show very clearly that γ34.5 deletion viruses do replicate productively in infected mouse brain ECs in vivo. These studies suggest that (i) ECs can serve as an exquisitely sensitive model for future evaluations of the ability of oHSVs to replicate productively in normal mouse brain cells and (ii) the potential exists for double-deletion oHSVs to damage normal brain cells. Thus, further comparative studies are warranted to determine whether this risk is sufficiently high to restrict the administration of ICP34.5 deletion viruses in or near the cerebral ventricles in clinical studies.  相似文献   

4.
5.
6.
7.
Molecular motor proteins use the energy released from ATP hydrolysis to generate force and haul cargoes along cytoskeletal filaments. Thus, measuring the force motors generate amounts to directly probing their function. We report on optical trapping methodology capable of making precise in vivo stall-force measurements of individual cargoes hauled by molecular motors in their native environment. Despite routine measurement of motor forces in vitro, performing and calibrating such measurements in vivo has been challenging. We describe the methodology recently developed to overcome these difficulties, and used to measure stall forces of both kinesin-1 and cytoplasmic dynein-driven lipid droplets in Drosophila embryos. Critically, by measuring the cargo dynamics in the optical trap, we find that there is memory: it is more likely for a cargo to resume motion in the same direction—rather than reverse direction—after the motors transporting it detach from the microtubule under the force of the optical trap. This suggests that only motors of one polarity are active on the cargo at any instant in time and is not consistent with the tug-of-war models of bidirectional transport where both polarity motors can bind the microtubules at all times. We further use the optical trap to measure in vivo the detachment rates from microtubules of kinesin-1 and dynein-driven lipid droplets. Unlike what is commonly assumed, we find that dynein’s but not kinesin’s detachment time in vivo increases with opposing load. This suggests that dynein’s interaction with microtubules behaves like a catch bond.  相似文献   

8.
Bemisia tabaci can harbor both primary and secondary endosymbionts, and the specific endosymbionts can differ among different B. tabaci biotypes. This study determined (1) the prevalence of the primary endosymbiont Portiera aleyrodidarum and secondary endosymbionts Arsenophonus and Wolbachia in two invasive biotypes (B and Q) and one indigenous biotype (Cv) in China and (2) the in vivo effect of three antibiotics (tetracycline, ampicillin trihydrate, and rifampicin) against the endosymbionts; if an antibiotic substantially inhibits an endosymbiont, it could be used to determine the effect of that endosymbiont on B. tabaci. P. aleyrodidarum and Wolbachia were detected in all the three biotypes, while Arsenophonus was found only in the Q and Cv biotypes. P. aleyrodidarum was found in all tested individuals of the three biotypes. Infection rates of Wolbachia in the B, Cv, and Q biotypes were 58, 68, and 48%, respectively. The infection rate of Arsenophonus was 44% in the Q biotype but only 22% in the Cv biotype. The antibiotics failed to eliminate P. aleyrodidarum from any individual of the B, Cv, and Q biotypes but eliminated the secondary endosymbionts, Arsenophonus and Wolbachia, from 50 to 80% of the adult B. tabaci. The effect of the antibiotics depended on the species of endosymbiont, the antibiotic, the B. tabaci biotype, and various interactions between these factors. When used against Arsenophonus, the efficiency of rifampicin was better than ampicillin and tetracycline, regardless of B. tabaci biotype. When inactivating Wolbachia in Cv and Q biotypes, the efficiency tetracycline was better than ampicillin and rifampicin, and while the efficiency of tetracycline was better than rifampicin and ampicillin when they were used against Wolbachia in B biotype.  相似文献   

9.
10.
Aims It is a huge challenge to understand the blood–brain barrier (BBB), which is a key element in neuroinflammation associated with many brain diseases. The BBB also regulates the passage of xenobiotics into the central nervous system (CNS), and therefore influences drug efficacy. This may be due to the presence of ATP binding cassette transporters such as P-glycoprotein (Pgp) on the BBB, which are efflux pumps known to transport many drugs. The peptide endothelin 1 (ET-1) is involved in different kinds of CNS diseases and neuroinflammation, and is known to modulate Pgp transport activity. Although there are data from animal models, data from human models are scarce. We evaluated Pgp expression and transport activity in adult human brain microvascular endothelial cells (HBMECs) when exposing an adult human in vitro BBB model to ET-1. Methods Adult HBMECs were cocultured with human adult glial cells on a TranswellsR to mimic blood and CNS compartments. These human in vitro BBBs were exposed for 24 h to 100 nM and 10 nM ET-1. Pgp expression was assessed by flow cytometry and its transport activity by measuring radiolabelled digoxin passage. Results After exposure to ET-1, flow cytometry showed no shift of fluorescence intensity for a Pgp specific antibody. The passage of digoxin increased with a significant decrease of Q ratio for 10 nM ET-1. Conclusion Our results show that ET-1 has no effect on Pgp expression of adult HBMECs, but does modulate Pgp transport activity.  相似文献   

11.
12.
The catalytic α-subunits of Na,K- and H,K-ATPase require an accessory β-subunit for proper folding, maturation, and plasma membrane delivery but also for cation transport. To investigate the functional significance of the β-N terminus of the gastric H,K-ATPase in vivo, several N-terminally truncated β-variants were expressed in Xenopus oocytes, together with the S806C α-subunit variant. Upon labeling with the reporter fluorophore tetramethylrho da mine-6-maleimide, this construct can be used to determine the voltage-dependent distribution between E1P/E2P states. Whereas the E1P/E2P conformational equilibrium was unaffected for the shorter N-terminal deletions βΔ4 and βΔ8, we observed significant shifts toward E1P for the two larger deletions βΔ13 and βΔ29. Moreover, the reduced ΔF/F ratios of βΔ13 and βΔ29 indicated an increased reverse reaction via E2P → E1P + ADP → E1 + ATP, because cell surface expression was completely unaffected. This interpretation is supported by the reduced sensitivity of the mutants toward the E2P-specific inhibitor SCH28080, which becomes especially apparent at high concentrations (100 μm). Despite unaltered apparent Rb+ affinities, the maximal Rb+ uptake of these mutants was also significantly lowered. Considering the two putative interaction sites between the β-N terminus and α-subunit revealed by the recent cryo-EM structure, the N-terminal tail of the H,K-ATPase β-subunit may stabilize the pump in the E2P conformation, thereby increasing the efficiency of proton release against the million-fold proton gradient of the stomach lumen. Finally, we demonstrate that a similar truncation of the β-N terminus of the closely related Na,K-ATPase does not affect the E1P/E2P distribution or pump activity, indicating that the E2P-stabilizing effect by the β-N terminus is apparently a unique property of the H,K-ATPase.The gastric H,K-ATPase fulfills the remarkable task of pumping protons against a more than 106-fold concentration gradient. H+ extrusion is coupled to countertransport of an equal number of K+ ions for each ATP molecule hydrolyzed, resulting in an electroneutral overall process (1). Characteristic for all P-type ATPases, the enzyme cycles between the two principal conformational states (E1 and E2) and the corresponding phosphointermediates (E1P and E2P), which are formed by reversible phosphorylation of an aspartate residue in the highly conserved DKTGTLT motif. According to a Post-Albers-like reaction scheme (see Fig. 1A), the conformational E1P → E2P transition converts the high H+/low K+ affinity of the cation binding pocket into a low H+/high K+ affinity binding site, hence enabling proton release into the stomach lumen and subsequent binding of extracellular K+. Because the pump faces a lumenal proton concentration of ∼150 mm (2), proton release is probably the energetically most demanding step in the reaction cycle. Thus, during the conformational E1P → E2P transition, enormous pKa changes of the H+-coordinating residues have to occur that most likely involve the rearrangement of a positively charged lysine side chain (Lys-791 in rat H,K-ATPase) (3).Open in a separate windowFIGURE 1.Post-Albers scheme (A) and cryo-EM structural representation of pig gastric H,K-ATPase in the fluoroaluminate-bound pseudo-E2P state (B). A, Post-Albers scheme of the proposed reaction cycle of the gastric H,K-ATPase. E1P/E2P conformational states giving rise to voltage jump-induced fluorescence changes of TMRM-labeled H,K-ATPase molecules are highlighted (gray box). B, structural representation based on the cryo-EM structure of the pig gastric H,K-ATPase (surface or mesh, contoured at 1 σ; EM Data Bank code 5104) and the corresponding homology model (schematic; Protein Data Bank code 3IXZ). Inset, a close-up view (from the right side of the molecule) showing the putative interaction sites of the β-subunit N terminus with the P-domain (red arrow) and αTM3 (black arrow), respectively. Color coding is indicated in the figure.All P2-type ATPases share a common catalytic α-subunit, composed of 10 transmembrane domains harboring the ion-binding sites and a large cytoplasmic loop with the nucleotide-binding domain, the phosphorylation domain (P-domain),2 and the actuator domain (A-domain) (4). However, a unique feature of K+-transporting Na,K- and H,K-ATPase enzymes is the requirement for an accessory β-subunit, which is indispensable for proper folding, maturation, and plasma membrane delivery (5, 6). Despite only 20–30% overall sequence identity between the H,K-ATPase β-subunit and the Na,K β-isoforms, the topogenic structure is similar: a short N-terminal cytoplasmic tail, followed by a single transmembrane segment and a large extracellular C-terminal domain with glycosylation sites and disulfide-bridging cysteines. Numerous studies have demonstrated that the β-subunit of the Na,K-ATPase is more than just a chaperone for the α-subunit, being also required for proper ion transport activity of the holoenzyme. In fact, it has been discovered that different cell- and tissue-specific β-isoforms have distinct effects on the cation affinities (79). Furthermore, it was shown that mutational changes in all three topogenic domains of the Na,K-ATPase β-subunit (1019) as well as chemical interference with disulfide-forming cysteines in the Na,K-ATPase β-subunit ectodomain (2022) affect the cation transport properties of the sodium pump. Finally, conformational changes in the β-subunit during the Na,K-ATPase reaction cycle were demonstrated by proteolytic digestion studies (23) and voltage clamp fluorometry (24).Far less is known about the functional significance of the single H,K-ATPase β-isoform, especially about its potential impact on cation transport (reviewed in Refs. 25 and 26). We have proven recently that E2P state-specific transmembrane interactions between residues in αTM7 and two highly conserved tyrosines in the βTM of both Na,K- and H,K-ATPase significantly stabilize the E2P conformation (19). Mutational disruptions of this interaction resulted in substantial shifts toward E1P and severely affected H+ secretion, which highlighted the physiological relevance of this E2P state stabilization. Notably, according to the recently published cryo-EM structure of pig gastric H,K-ATPase in the pseudo-E2P state (27), the N-terminal tail of the β-subunit makes direct contact with the phosphorylation domain of the α-subunit (see Fig. 1B), thus indicating an additional E2P state stabilization mediated by the β-N terminus. Although this idea was further supported by biochemical studies on N-terminally truncated mutants, direct evidence for this putative E2P-stabilizing interaction and its potential significance for ion transport in intact cells is still lacking.Here, we demonstrate for the first time the functional importance of the gastric H,K-ATPase β-subunit N terminus in living cells under in vivo conditions: voltage clamp fluorometry, Rb+ flux, and SCH28080 sensitivity measurements revealed E1P-shifted, ion transport-impaired phenotypes for two N-terminally truncated H,K β-variants, thus substantiating the E2P-stabilizing effect of the β-N terminus suggested by the recent cryo-EM structure.  相似文献   

13.
14.
15.
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.  相似文献   

16.
17.
18.
Malignant pleural mesothelioma (MPM) is an aggressive malignancy highly resistant to chemotherapy. There is an urgent need for effective therapy inasmuch as resistance, intrinsic and acquired, to conventional therapies is common. Among Pt(II) antitumor drugs, [Pt(O,O′-acac)(γ-acac)(DMS)] (Ptac2S) has recently attracted considerable attention due to its strong in vitro and in vivo antiproliferative activity and reduced toxicity. The purpose of this study was to examine the efficacy of Ptac2S treatment in MPM. We employed the ZL55 human mesothelioma cell line in vitro and in a murine xenograft model in vivo, to test the antitumor activity of Ptac2S. Cytotoxicity assays and Western blottings of different apoptosis and survival proteins were thus performed. Ptac2S increases MPM cell death in vitro and in vivo compared with cisplatin. Ptac2S was more efficacious than cisplatin also in inducing apoptosis characterized by: (a) mitochondria depolarization, (b) increase of bax expression and its cytosol-to-mitochondria translocation and decrease of Bcl-2 expression, (c) activation of caspase-7 and -9. Ptac2S activated full-length PKC-δ and generated a PKC-δ fragment. Full-length PKC-δ translocated to the nucleus and membrane, whilst PKC-δ fragment concentrated to mitochondria. Ptac2S was also responsible for the PKC-ε activation that provoked phosphorylation of p38. Both PKC-δ and PKC-ε inhibition (by PKC–siRNA) reduced the apoptotic death of ZL55 cells. Altogether, our results confirm that Ptac2S is a promising therapeutic agent for malignant mesothelioma, providing a solid starting point for its validation as a suitable candidate for further pharmacological testing.  相似文献   

19.
20.

Background

HIV-1 CRF01_AE accounts for an important fraction of HIV infections in Asia including China, but little is known about the phylogenetic and evolutionary history of this CRF (circulating recombinant form). In the current study, we collected a large number of 1,957 CRF01_AE gag p17 sequences with known sampling year (1990-2010) from 5 global regions representing 15 countries to better understand the phylogenetic relationships and epidemic history of CRF01_AE strains in China.

Methodology/Principal Findings

CRF01_AE gag p17 sequences were retrieved from public databases to explore phylogenetic relationships and phylogeographic dynamics of CRF01_AE in Asia by using maximum-likelihood phylogenetics and Bayesian coalescent-based analyses. We found close phylogenetic relationships between sequences from Thailand, Vietnam and China. Moreover, at least 5 independent introductions and 5 independent autochthonous clades of CRF01_AE, which descended from Thailand or Vietnam were identified in China from 1991 through 2003.

Conclusion/Significance

The current study not only defines the migration of CRF01_AE clades to/in Asia, but also demonstrates the criticalness of identifying the circulating strains in the population for the development of vaccine and microbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号