首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Nonmuscle myosin II minifilaments have emerged as central elements for force generation and mechanosensing by mammalian cells. Each minifilament can have a different composition and activity due to the existence of the three nonmuscle myosin II paralogs A, B and C and their respective phosphorylation pattern. We have used CRISPR/Cas9-based knockout cells, quantitative image analysis and mathematical modeling to dissect the dynamic processes that control the formation and activity of heterotypic minifilaments and found a strong asymmetry between paralogs A and B. Loss of NM IIA completely abrogates regulatory light chain phosphorylation and reduces the level of assembled NM IIB. Activated NM IIB preferentially co-localizes with pre-formed NM IIA minifilaments and stabilizes the filament in a force-dependent mechanism. NM IIC is only weakly coupled to these processes. We conclude that NM IIA and B play clearly defined complementary roles during assembly of functional minifilaments. NM IIA is responsible for the formation of nascent pioneer minifilaments. NM IIB incorporates into these and acts as a clutch that limits the force output to prevent excessive NM IIA activity. Together these two paralogs form a balanced system for regulated force generation.  相似文献   

2.
The objective of this study is to understand more precisely the relationship of motoneuron activity to movements of the rabbit nictitating membrane (NM). We use a model of the oculomotor plant to investigate what NM movements are generated by a given pattern of neural input and what inputs are required to generate particular NM movements. Simulated peak NM extensions can occur well over 50 ms after the end of motoneuron activity. The neural input required for the model to generate full amplitude NM extension responses is more consistent with single accessory abducens unit recordings from awake rabbits than recordings from anesthetized rabbits. An initial high frequency burst of neural activity followed by a rapid decay is required for simulations of conditioned responses (CRs) trained at a 125 ms interstimulus interval (ISI). For CRs trained with a 250 ms ISI, a more slowly rising and decaying neural activity is required. Model simulations show that the linear correlation between the shape of histogrammed motoneuron activity and the shape of NM movements can be high for long duration responses (> 400 ms) but is low for short duration responses (< 200 ms). Simulations are also consistent with the hypothesis that NM retraction is generally passive.  相似文献   

3.
We reported previously that an N-terminally truncated insulinlike growth factor I receptor (IGFR) fused to avian sarcoma virus UR2 gag p19 had a greater transforming potential than did the native IGFR, but it failed to cause tumors in vivo. To investigate whether the 36 amino acids (aa) of the IGFR extracellular (EC) sequence in the gag-IGFR fusion protein encoded by the retrovirus UIGFR have a modulatory effect on the biological and biochemical properties of the protein, four mutants, NM1, NM2, NM3, and NM4 of the EC sequence were constructed. NM1 lacks the entire 36 aa residues; NM2 lacks the N-terminal 16 aa residues (aa 870 to 885), including two potential N-linked glycosylation sites of the EC sequence; NM3 contains a deletion of the C-terminal 20 aa residues (aa 886 to 905) of the EC sequence; and NM4 contains N-to-Q substitutions at both N-linked glycosylation sites. NM1 was the strongest of the four mutants in promoting anchorage-independent growth of transfected chicken embryo fibroblasts, while NM2 and NM4 had weaker transforming potential than did the original UIGFR virus. Only NM1 and NM3 were able to induce sarcomas in chickens. The four NM mutant-transformed cells expressed the expected proteins with comparable steady-state levels. The in vitro tyrosine kinase activity of P53NM1 was about fourfold higher than that of the parental P57-75UIGFR, whereas NM2 and NM4 proteins exhibited four- to fivefold-lower kinase activities. Despite lacking the IGFR EC sequence, P53NM1 formed covalent dimers similar to those formed by the parental P57-75UIGFR. Increased phosphatidylinositol (PI) 3-kinase activity was found to be associated with the mutant IGFR proteins. Among NM4 proteins. Elevated tyrosine phosphorylation of cellular proteins of 35, 120, 140, 160, and 170 kDa was detected in all mutant IGFR-transformed cells. We conclude that the EC 36-aa sequence of IGFR in the gag-IGFR fusion protein exerts intricate modulatory effects on the protein's transforming and tumorigenic potential. The 20 aa residues immediately upstream of the transmembrane domain have an inhibitory effect on the tumorigenic potential of gag-IGFR, whereas N-linked glycosylation within the EC sequence appears to have a positive effect on the transforming potential of UIGFR. Increased in vitro kinase activity and, to a lesser extent, in vivo tyrosine phosphorylation as well as the elevated association of PI 3-kinase activity with IGFR proteins seem to be correlated with the transforming potential of IGFR mutant proteins.  相似文献   

4.
NM23-H1 is a member of the NM23/NDP kinase gene family and a putative metastasis suppressor. Previously, a screen for NM23-H1-interacting proteins that could potentially modulate its activity identified serine-threonine kinase receptor-associated protein (STRAP), a transforming growth factor (TGF)-beta receptor-interacting protein. Through the use of cysteine to serine amino acid substitution mutants of NM23-H1 (C4S, C109S, and C145S) and STRAP (C152S, C270S, and C152S/C270S), we demonstrated that the association between these two proteins is dependent on Cys(145) of NM23-H1 and Cys(152) and Cys(270) of STRAP but did not appear to involve Cys(4) and Cys(109) of NM23-H1, suggesting that a disulfide linkage involving Cys(145) of NM23-H1 and Cys(152) or Cys(270) of STRAP mediates complex formation. The interaction was dependent on the presence of dithiothreitol or beta-mercaptoethanol but not H(2)O(2). Ectopic expression of wild-type NM23-H1, but not NM23-H1(C145S), negatively regulated TGF-beta signaling in a dose-dependent manner, enhanced stable association between the TGF-beta receptor and Smad7, and prevented nuclear translocation of Smad3. Similarly, wild-type NM23-H1 inhibited TGF-beta-induced apoptosis and growth inhibition, whereas NM23-H1(C145S) had no effect. Knockdown of NM23-H1 by small interfering RNA stimulated TGF-beta signaling. Coexpression of wild-type STRAP, but not STRAP(C152S/C270S), significantly stimulated NM23-H1-induced growth of HaCaT cells. These results suggest that the direct interaction of NM23-H1 and STRAP is important for the regulation of TGF-beta-dependent biological activity as well as NM23-H1 activity.  相似文献   

5.
We investigated the effects of neuromelanin (NM) isolated from the human substantia nigra and synthetic dopamine melanin (DAM) on neuronal and glial cell lines and on primary rat mesencephalic cultures. Lactate dehydrogenase (LDH) activity and lipid peroxidation were significantly increased in SK-N-SH cells by DAM but not by NM. In contrast, iron-saturated NM significantly increased LDH activity in SK-N-SH cells, compared with 100 mg/mL ETDA-treated NM containing a low concentration of bound iron. DAM, but not NM, stimulated hydroxyl radical production and increased SK-N-SH cell death via apoptotic-like mechanisms. Neither DAM nor NM induced any changes in the glial cell line U373. 3H-dopamine uptake in primary rat mesencephalic cultures was significantly reduced in DAM-compared with NM-treated cultures, accompanied by increased cell death via an apoptosis-like mechanism. Interestingly, Fenton-induced cell death was significantly decreased in cultures treated with both Fenton reagent and NM, an effect not seen in cultures treated with Fenton reagent plus DAM. These data are suggestive of a protective role for neuromelanin under conditions of high oxidative load. Our findings provide new evidence for a physiological role for neuromelanin in vivo and highlights the caution with which data based upon model systems should be interpreted.  相似文献   

6.
The metastasis suppressor NM23-H1 possesses 3'-5' exonuclease activity   总被引:11,自引:0,他引:11  
NM23-H1 belongs to a family of eight gene products in humans that have been implicated in cellular differentiation and development, as well as oncogenesis and tumor metastasis. We have defined NM23-H1 biochemically as a 3'-5' exonuclease by virtue of its ability in stoichiometric amounts to excise single nucleotides in a stepwise manner from the 3' terminus of DNA. The activity is dependent upon the presence of Mg(2+), is most pronounced with single-stranded substrates or mismatched bases at the 3' terminus of double-stranded substrates, and is inhibited by both ATP and the incorporation of cordycepin, a 2'-deoxyadenosine analogue, into the 3'-terminal position. The 3'-5' exonuclease activity was assigned to NM23-H1 by virtue of: 1) precise coelution of enzymatic activity with wild-type and mutant forms of NM23-H1 protein during purification by hydroxylapatite and gel filtration column high performance liquid chromatography and 2) significantly diminished activity exhibited by purified recombinant mutant forms of the proteins. Lysine 12 appears to play an important role in the catalytic mechanism, as evidenced by the significant reduction in 3'-5' exonuclease activity resulting from a Lys(12) to glutamine substitution within the protein. 3'-5' Exonucleases are believed to play an important role in DNA repair, a logical candidate function underlying the putative antimetastatic and oncogenic activities of NM23-H1.  相似文献   

7.
Gelatinase activity and inhibitory activity against collagenase were measured in serum-free medium conditioned by murine colonic carcinoma cells with different spontaneous metastatic potentials to the lung. The medium conditioned with poorly metastatic NM11 cells gave higher inhibitory activity than that conditioned with highly metastatic LuM1 cells, while the level of secreted gelatinases in the same medium was lower in NM11 medium than in LuM1 case. Northern analysis showed the higher gene expression of both tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2 in NM11 cells than in LuM1 cells, suggesting that both TIMPs are responsible for the increase of inhibitory activity in NM11 conditioned medium. Examination of the balance of gelatinases and inhibitor revealed that the amount of inhibitor exceeded that of gelatinases in the medium conditioned with NM11 cells. In contrast, the medium conditioned with LuM1 cells contained excess amounts of gelatinases. The results indicated a close correlation between the balance of gelatinases and inhibitors and the metastatic behavior of murine tumor cells.  相似文献   

8.
NM23-H1 is a metastasis suppressor protein that exhibits 3′-5′ exonuclease activity in vitro. As 3′-5′ exonucleases are generally required for maintenance of genome integrity, this activity represents a plausible candidate mediator of the metastasis suppressor properties of the NM23-H1 molecule. Consistent with an antimutator function, ablation of the yeast NM23 homolog, YNK1, results in increased mutation rates following exposure to UV irradiation and exposure to the DNA damaging agents etoposide, cisplatin, and MMS. In human cells, a DNA repair function is further suggested by increased NM23-H1 expression and nuclear translocation following DNA damage. Also, forced expression of NM23-H1 in NM23-deficient and metastatic cell lines results in coordinate downregulation of multiple DNA repair genes, possibly reflecting genomic instability associated with the NM23-deficient state. To assess the relevance of the 3′-5′ exonuclease activity of NM23-H1 to its antimutator and metastasis suppressor functions, a panel of mutants harboring defects in the 3′-5′ exonuclease and other enzymatic activities of the molecule (NDPK, histidine kinase) have been expressed by stable transfection in the melanoma cell line, 1205Lu. Pilot in vivo metastasis assays indicate 1205Lu cells are highly responsive to the metastasis suppressor effects of NM23-H1, thus providing a valuable model for measuring the extent to which the nuclease function opposes metastasis and metastatic progression.  相似文献   

9.
Insulin-like growth factor I receptor (IGFR) plays an important role in cell growth and transformation. We dissected the downstream signaling pathways of an oncogenic variant of IGFR, Gag-IGFR, called NM1. Loss of function mutants of NM1, Phe-1136 and dS2, that retain kinase activity but are attenuated in their transforming ability were used to identify signaling pathways that are important for transformation of NIH 3T3 cells. MAPK, phospholipase C gamma, and Stat3 were activated to the same extent by NM1 and its two mutants, suggesting that activation of these pathways, individually or in combination, was not sufficient for NM1-induced cell transformation. The mutant dS2 has decreased IRS-1 phosphorylation levels and IRS-1-associated phosphatidylinositol 3'-kinase activity, suggesting that this impairment may be in part responsible for the defectiveness of dS2. We show that Rho family members, RhoA, Rac1, and Cdc42 are activated by NM1, and this activation, particularly RhoA and Cdc42, is attenuated in both mutants of NM1. Dominant negative mutants of Rho, Rac, and Cdc42 inhibited NM1-induced cell transformation, as measured by focus and colony forming ability. Dominant negative Rho most potently inhibited the focus forming activity, whereas Cdc42 was most effective in inhibiting the colony forming ability of NM1-expressing cells. Conversely, constitutively activated (ca) Rho is more effective than ca Rac or ca Cdc42 in rescuing the focus forming ability of the mutants. By contrast, ca Cdc42 is most effective in rescuing the colony forming ability of both mutants.  相似文献   

10.
11.
12.
13.
We propose that the in vivo functions of NM II (non-muscle myosin II) can be divided between those that depend on the N-terminal globular motor domain and those less dependent on motor activity but more dependent on the C-terminal domain. The former, being more dependent on the kinetic properties of NM II to translocate actin filaments, are less amenable to substitution by different NM II isoforms, whereas the in vivo functions of the latter, which involve the structural properties of NM II to cross-link actin filaments, are more amenable to substitution. In light of this hypothesis, we examine the ability of NM II-A, as well as a motor-compromised form of NM II-B, to replace NM II-B and rescue neuroepithelial cell-cell adhesion defects and hydrocephalus in the brain of NM II-B-depleted mice. We also examine the ability of NM II-B as well as chimaeric forms of NM II (II-A head and II-B tail and vice versa) to substitute for NM II-A in cell-cell adhesions in II-A-ablated mice. However, we also show that certain functions, such as neuronal cell migration in the developing brain and vascularization of the mouse embryo and placenta, specifically require NM II-B and II-A respectively.  相似文献   

14.
Influenza, one of the oldest and most common infections, poses a serious health problem causing significant morbidity and mortality, and imposing substantial economic costs. The efficacy of current drugs is limited and improved therapies are needed. A unique nutrient mixture (NM), containing ascorbic acid, green tea extract, lysine, proline, N-acetyl cysteine, selenium among other micronutrients, has been shown to exert anti-carcinogenic and anti-atherogenic activity both in vitro and in vivo. Many of the constituents of NM have been shown to have an inhibitory effect on replication of influenza virus and HIV. This prompted us to study the effect of NM on influenza A virus multiplication in infected cells and neuraminidase activity (NA) in virus particles. Addition of NM to Vero or MDCK cells post infection resulted in dose-dependent inhibition of viral nucleoprotein (NP) production in infected cells. NM-mediated inhibition of viral NP was selective and not due to cytotoxicity towards host cells. This antiviral effect was enhanced by pretreatment of virus with the nutrient mixture. Individual components of NM, namely ascorbic acid and green tea extract, also blocked viral NP production, conferring enhanced inhibition when tested in combination. Incubation of cell-free virus with NM resulted in dose-dependent inhibition of associated NA enzyme activity. In conclusion, the nutrient mixture exerts an antiviral effect against influenza A virus by lowering viral protein production in infected cells and diminishing viral enzymatic activity in cell-free particles.  相似文献   

15.
The Bcl-2 family members are evolutionally conserved and crucial regulators of apoptosis. Diva (Boo), an ortholog of Bcl2L10 or Bcl-B, is a member of the Bcl-2 family that has contradictory functions in apoptosis. To understand the signaling mechanisms of Diva, we searched for proteins that interact with Diva using the yeast two-hybrid system. We identified a nucleoside diphosphate kinase isoform, NM23-H2. Here, we show that Diva bound to NM23-H2 in cells in which the transmembrane domain of Diva was required, and both proteins were colocalized in cytoplasm. Of interest, Diva protein level was significantly down-regulated by NM23-H2 as knock down of NM23-H2 restored Diva expression. Overexpression of NM23-H2 induced apoptosis, and the depletion of NM23-H2 led to the increase of Diva's apoptotic activity. Thus, these results indicate the existence of a previously undiscovered mechanism by which NM23-H2 involves in the regulation of Diva-mediated apoptosis.  相似文献   

16.
NM23 (NDP kinase) modulates the gating of muscarinic K+ channels by agonists through a mechanism distinct from GTP regeneration. To better define the function of NM23 in this pathway and to identify sites in NM23 that are important for its role in muscarinic K+ channel function, we utilized MDA-MB-435 human breast carcinoma cells that express low levels of NM23-H1. M2 muscarinic receptors and GIRK1/GIRK4 channel subunits were co-expressed in cells stably transfected with vector only (control), wild-type NM23-H1, or several NM23-H1 mutants. Lysates from all cell lines tested exhibit comparable nucleoside diphosphate (NDP) kinase activity. Whole cell patch clamp recordings revealed a substantial reduction of the acute desensitization of muscarinic K+ currents in cells overexpressing NM23-H1. The mutants NM23-H1P96S and NM23-H1S44A resembled wild-type NM23-H1 in their ability to reduce desensitization. In contrast, mutants NM23-H1S120G and NM23-H1S120A completely abolished the effect of NM23-H1 on desensitization of muscarinic K+ currents. Furthermore, NM23-H1S120G potentiated acute desensitization, indicating that this mutant retains the ability to interact with the muscarinic pathway, but has properties antithetical to those of the wild-type protein. We conclude that NM23 acts as a suppressor of the processes leading to the desensitization of muscarinic K+ currents, and that Ser-120 is essential for its actions.  相似文献   

17.
溴化十烷基三甲铵对肌酸激酶的变性及复性   总被引:5,自引:1,他引:5  
测定了溴化十烷基三甲铵(C_(10)H_(21)N(CH_3)_3Br;记为C_(10)NM_3)对肌酸激酶(Creatine Kinase;记为C.K.)的活力及构象的影响,以及变性后C.K.的复性。实验结果表明:C_(10)NM_3对C.K.有很强的变性能力,在0.06M时,就可以使C.K.完全失活;在0.08M时,就可使C.K.内部的6个巯基有4个暴露出来;与SDS变性剂不同,C.K.在高浓度的C_(10)NM_3中变性以后,直接冲稀时就可以完全复性。FTIR以及CD等实验方法证明,尽管C_(10)NM_3能使C.K.的构象发生明显变化,但C.K.的二级结构几乎不受C_(10)NM_3的影响。  相似文献   

18.
Amelioration of hypoxemia by neuromuscular blockade following brain injury   总被引:1,自引:0,他引:1  
Brain injury has been commonly associated with respiratory failure and uncontrolled skeletal muscle activity. In the present study, neuromuscular (NM) blockade induced by injection of succinylcholine hydrochloride was used to block uncontrolled muscle contractions in dogs with brain injury caused by rapid elevation of intracranial pressure (ICP). Decerebrate posturing, a decrease in value (mean +/- SEM) of arterial oxygen tension (Pa02) of 26 +/- 1 torr, and an increase in arterial carbon dioxide tension (PaCO2) of 11 +/- 1 torr occurred in the dogs, which were supported by mechanical ventilation. The arterial hypoxemia developed independently of the decerebration; however, dogs that demonstrated decerebrate posturing exhibited significantly larger decreases in Pa02 than dogs that did not (P less than 0.01). NM blockade ameliorated the effects of elevated ICP on the arterial blood gases; i.e., the amount of hypoxemia in decerebrate dogs was significantly less in dogs subjected to NM blockade than in dogs not subjected to NM blockade. It is concluded that uncontrolled skeletal muscle activity that exacerbates arterial hypoxemia associated with brain injury is ameliorated by use of NM blockade as a therapeutic adjunct to mechanical ventilation.  相似文献   

19.
Du J  Hannon GJ 《Nucleic acids research》2002,30(24):5465-5475
Alterations in the activity of the centrosomal kinase, Aurora-A/STK15, have been implicated in centrosome amplification, genome instability and cellular transformation. How STK15 participates in all of these processes remains largely mysterious. The activity of STK15 is regulated by phosphorylation and ubiquitin-mediated degradation, and physically interacts with protein phosphatase 1 (PP1) and CDC20. However, the precise roles of these modifications and interactions have yet to be fully appreciated. Here we show that STK15 associates with a putative tumor and metastasis suppressor, NM23-H1. STK15 and NM23 were initially found to interact in yeast in a two-hybrid assay. Association of these proteins in human cells was confirmed by co-immunoprecipitation from cell lysates and biochemical fractionation indicating that STK15 and NM23-H1 are present in a stable, physical complex. Notably, SKT15 and NM23 both localize to centrosomes throughout the cell cycle irrespective of the integrity of the microtubule network in normal human fibroblasts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号