首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Malaria parasites exhibit sequence diversity for a number of stage specific antigens. Several studies have proved that merozoite surface protein-1 (MSP-1) is an effective target eliciting a protective immune response. The MSP-1(42) region comprising two EGF-like domains is involved in generating protective immune response in humans and other experimental animals. Searching for point mutations in this region is essential in view of vaccine development. We have investigated the sequence variations in Plasmodium falciparum MSP-1 carboxy terminal region in field isolates from different regions in India. Our study reveals the presence of eight variant types of MSP-1(19) in the Indian sub-continent, which comprise of E-TSR-L, Q-TSR-L, E-TSG-L, Q-KNG-L, Q-KNG-F, E-KNG-L, E-KNG-F, and E-KYG-F. The last named allele is a novel variant being reported for the first time.  相似文献   

2.
Polymorphism in the block-2 region of merozoite surface protein-1 gene in 69 North Indian Plasmodium falciparum isolates was studied by PCR and RFLP using Dra-1 endonuclease. On the basis of molecular weight of the PCR products, considerable size polymorphism in target gene was seen and 69 isolates were classified into five allelic types. On RFLP, the isolates in three allelic types were further divided into two sub-allelic types each and thus eight genetic types could be identified. Interestingly, all five allelic types were identified in 47 isolates from uncomplicated (non-cerebral) malaria patients while only two allelic types (Type 2 and 3) were seen amongst 22 isolates from cerebral malaria patients. Furthermore, on RFLP, one subtype (2A) was predominantly seen in cerebral malaria patients and one subtype (3A) was exclusively found in cerebral malaria patients. These observations suggest that a few, comparatively more virulent isolates prevalent in an area may cause severe disease (cerebral malaria) which can be identified by molecular techniques like PCR-RFLP.  相似文献   

3.
The genetic polymorphism of the surface merozoite protein 2 (MSP-2) was evaluated in Plasmodium falciparum isolates from individuals with uncomplicated malaria living in a Brazilian endemic area of Peixoto de Azevedo. The frequency of MSP-2 alleles and the survival of genetically different populations clones in 104 isolates were verified by Southern blot and SSCP-PCR. Single and mixed infections were observed in similar frequencies and the rate of detection of FC27 and 3D7 allelic families was equivalent. Eight alleles were identified and among them, the sequence polymorphism was mainly attributed to variations in the repetitive region. Interestingly, in three alleles nucleotide polymorphism was identical to that detected in a previous study, conducted in 1992, in a near Brazilian endemic area. This finding demonstrated the genetic similarity between two isolate groups, besides the certain temporal stability in the allelic patterns. The implications of these data for studies on the genetic diversity are also discussed.  相似文献   

4.
A number of stage-specific antigens have been characterized for vaccine development against Plasmodium falciparum malaria. This study presents a comprehensive analysis of the sequence polymorphism in Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) in population samples from the eastern and western parts of India. This is the first study of its kind for the nearly full length PfAMA-1 gene from these regions in India. Our observations confirmed that sequence diversity of PfAMA-1 confines only to point mutations and shows 4-8% variation as compared to the prototypes. As opposed to the previous studies on PfAMA-1, our study revealed a greater degree of polymorphism in the Domain II region of PfAMA-1 protein, though signature for diversifying selection is seen throughout the gene. Our present investigation also indicates a very high degree of variation in the reported T- and B-cell epitopes of PfAMA-1. Few noteworthy and unique observations made in this study are the substitution of Cysteine residues responsible for the disulfide bond structure of the protein and the presence of premature termination after 595 amino acids in 3 of the 13 isolates under consideration. These crucial findings add new perspectives to the future of AMA-1 research and could have major implications in establishing AMA-1 as a vaccine candidate.  相似文献   

5.
BACKGROUND: The sickle-cell trait protects against severe Plasmodium falciparum malaria and reduces susceptibility to mild malaria but does not prevent infection. The exact mechanism of this protection remains unclear. We have hypothesized that AS individuals are protected by virtue of being less susceptible to a subset of parasite strains; thus we compared some genetic characteristics of parasites infecting AS and AA subjects. MATERIALS AND METHODS: Blood was collected from asymptomatic individuals living in two different regions of Africa. The polymorphic MSP-1 and MSP-2 loci were genotyped using a PCR-based methodology. Individual alleles were identified by size polymorphism, amplification using family-specific primers, and hybridization using family-specific probes. Multivariate logistic regression was used to analyze allele distribution. RESULTS: In Senegalese carriers, age and hemoglobin type influenced differently the distribution of the three MSP-1 families and had an impact on distinct individual alleles, whereas the distribution of MSP-2 alleles was marginally affected. There was no influence of other genetic traits, including the HLA Bw53 genotype, or factors such as place of residence within the village. In a cohort of Gabonese schoolchildren in which the influence of age was abrogated, a similar imbalance in the MSP-1 allelic distribution but not of MSP-2 allelic distribution by hemoglobin type was observed. CONCLUSIONS: The influence of the host's hemoglobin type on P. falciparum genotypes suggests that parasite fitness for a specific host is strain-dependent, which is consistent with our hypothesis that innate resistance might result from reduced fitness of some parasite strains for individuals with sickle-cell traits.  相似文献   

6.
The recent evolution of Plasmodium falciparum is at odds with the extensive polymorphism found in most genes coding for antigens. Here, we examined the patterns and putative mechanisms of sequence diversification in the merozoite surface protein-2 (MSP-2), a major malarial repetitive surface antigen. We compared the msp-2 gene sequences from closely related clones derived from sympatric parasite isolates from Brazilian Amazonia and used microsatellite typing to examine, in these same clones, the haplotype background of chromosome 2, where msp-2 is located. We found examples of msp-2 sequence rearrangements putatively created by nonreciprocal recombinational events, such as replication slippage and gene conversion, while maintaining the chromosome haplotype. We conclude that these nonreciprocal recombination events may represent a major source of antigenic diversity in MSP-2 in P. falciparum populations with low rates of classical meiotic recombination.  相似文献   

7.
Merozoite surface protein-1 (MSP-1) and merozoite surface protein-2 (MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorphisms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.  相似文献   

8.
In this work we investigated the frequency of polymorphism in exon II of the gene encoding most of the amino-terminal region of the serine rich antigen (SERA) in Plasmodium falciparum field samples. The blood samples were collected from P. falciparum infected individuals in three areas of the Brazilian Amazon. Two fragments have been characterized by polymerase chain reaction: one of 175 bp corresponding to the repeat region with 5 octamer units and one other of 199 bp related to the 6 repeat octamer units of SERA protein. The 199 bp fragment was the predominant one in all the studied areas. The higher frequency of this fragment has not been described before and could be explained by an immunological selection of the plasmodial population in the infected individuals under study. Since repeat motifs in the amino-terminal region of SERA contain epitopes recognized by parasite-inhibitor antibodies, data reported here suggest that the analysis of the polymorphism of P. falciparum isolates in different geographical areas is a preliminary stage before the final drawing of an universal vaccine against malaria can be reached.  相似文献   

9.
The global emergence and spread of malaria parasites resistant to antimalarial drugs is the major problem in malaria control. The genetic basis of the parasite's resistance to the antimalarial drug chloroquine (CQ) is well-documented, allowing for the analysis of field isolates of malaria parasites to address evolutionary questions concerning the origin and spread of CQ-resistance. Here, we present DNA sequence analyses of both the second exon of the Plasmodium falciparum CQ-resistance transporter (pfcrt) gene and the 5' end of the P. falciparum multidrug-resistance 1 (pfmdr-1) gene in 40 P. falciparum field isolates collected from eight different localities of Odisha, India. First, we genotyped the samples for the pfcrt K76T and pfmdr-1 N86Y mutations in these two genes, which are the mutations primarily implicated in CQ-resistance. We further analyzed amino acid changes in codons 72-76 of the pfcrt haplotypes. Interestingly, both the K76T and N86Y mutations were found to co-exist in 32 out of the total 40 isolates, which were of either the CVIET or SVMNT haplotype, while the remaining eight isolates were of the CVMNK haplotype. In total, eight nonsynonymous single nucleotide polymorphisms (SNPs) were observed, six in the pfcrt gene and two in the pfmdr-1 gene. One poorly studied SNP in the pfcrt gene (A97T) was found at a high frequency in many P. falciparum samples. Using population genetics to analyze these two gene fragments, we revealed comparatively higher nucleotide diversity in the pfcrt gene than in the pfmdr-1 gene. Furthermore, linkage disequilibrium was found to be tight between closely spaced SNPs of the pfcrt gene. Finally, both the pfcrt and the pfmdr-1 genes were found to evolve under the standard neutral model of molecular evolution.  相似文献   

10.
The population structure of Plasmodium falciparum has been widely studied in diverse epidemiological contexts, but emphasis has been made in regions with high and stable transmission. In order to establish the genetic structure of P. falciparum in areas of Colombia with different degree of endemicity, we studied 100 samples from malaria patients of two different municipalities. The frequency of multiclonal infection in these areas and the correlation with the endemicity were carried out by comparison of the amplified products from polymorphic segments of MSP-1, MSP-2, and GLURP genes. We found low size polymorphism of the studied genes: 1 MSP-1 allele, 3 MSP-2 alleles, and 4 GLURP alleles. We conclude that the P. falciparum population in the regions studied is genetically homogeneous.  相似文献   

11.
The C-terminal 42.10(3) Da portion of the merozoite surface protein (MSP-1) of the human malaria parasite Plasmodium falciparum is of interest, not only because it may constitute an essential part of a future anti-malaria vaccine, but also due to its role during the infection of erythrocytes by the parasite. We have cloned and expressed two synthetic DNA sequences encoding the two prototypic MSP-1(42) variants in E. coli. When over-produced, both proteins form insoluble aggregates which were isolated in high purity and yield. After solubilisation and refolding in vitro, both proteins were purified to homogeneity by a three-step procedure applying Ni-chelate, size exclusion and immuno-affinity chromatography. After purification, both proteins meet key criteria of preparations for clinical use. First, conformational studies suggest proper folding of the proteins, particularly in the region containing two EGF-like domains. Polyclonal serum raised against E. coli produced MSP-1(42) recognizes native MSP-1 in Plasmodium infected erythrocytes as shown by immunofluorescence.  相似文献   

12.
To assess the possible impact of insecticide treated curtains (ITC) on the composition of a Plasmodium falciparum population in a rural area of Burkina Faso, blood samples were collected during the rainy season of 1997 from 226 children aged 3-6 years, from 4 villages equipped with ITC and 2 control villages without ITC. The analysis of fragment lengths of 3 highly polymorphic P. falciparum genes (msp-1, msp-2 and glurp) revealed a maximum number of 3 alleles per infected person for each gene. The mean number of clones per infected person was similar in villages with and without ITC.  相似文献   

13.
Besides their mitochondrial genome, malarial parasites contain a second organellar DNA. This 35 kb circular molecule has a number of features reminiscent of plastid DNAs. Sequence analysis shows that along with other genes the circle codes for 25 different tRNAs all of which are transcribed. Six of the tRNAs have some unusual features, and one has an intron, the only one found so far on the circle. Comparison of codon and anticodon usage indicates that the 25 tRNAs are sufficient to decode all the protein genes present on the circle. The maintenance of such a parsimonious but complete translation system is further evidence for the functionality of the circle.  相似文献   

14.
15.
The major surface protein MSP-1 of Plasmodium falciparum blood-stage malaria parasites contains notably conserved sequence blocks with unknown function. The recombinant protein 190L, which represents such a block, exhibits a high affinity for red blood cell membranes. We demonstrate that both 190L and native MSP-1 protein bind to the inner red blood cell membrane skeleton protein spectrin. By using overlapping peptides covering the 190L molecule, we show that the spectrin contact site of 190L is included in a linear sequence of 30 amino acid residues. Association of 190L with naturally occurring spectrin deficient red blood cells is drastically reduced. In the same cells parasite invasion is normal, but the intracellular parasite development arrests late in the trophozoite stage. A similar situation arises when synthetic peptides covering the spectrin recognition sequence of 190L are added to P.falciparum cultures. These data and the cellular localization of MSP-1 suggest the possibility that MSP-1 associates with spectrin under natural conditions.  相似文献   

16.
The Plasmodium falciparum malaria parasite is the causative agent of malaria tropica. Merozoites, one of the extracellular developmental stages of this parasite, expose at their surface the merozoite surface protein-1 complex (MSP-1), which results from the proteolytic processing of a 190-200 kDa precursor. MSP-1 is highly immunogenic in humans and numerous studies suggest that this protein is an effective target for a protective immune response. Although its function is unknown, there are indications that it may play a role during invasion of erythrocytes by merozoites. The parasite-derived msp-1 gene, which is approximately 5000 bp long, contains 74% AT. This high AT content has prevented stable cloning of the full-size gene in Escherichia coli and consequently its expression in heterologous systems. Here, we describe the synthesis of a 4917 bp gene encoding MSP-1 from the FCB-1 strain of P. falciparum adjusted for human codon preferences. The synthetic msp-1 gene (55% AT) was cloned, maintained and expressed in its entirety in E.coli as well as in CHO and HeLa cells. The purified protein is soluble and appears to possess native conformation because it reacts with a panel of mAbs specific for conformational epitopes. The strategy we used for synthesizing the full-length msp-1 gene was toassemble it from DNA fragments encoding all of the major proteolytic fragments normally generated at the parasite's surface. Thus, after subcloning we also obtained each of these MSP-1 processing products as hexahistidine fusion proteins in E.coli and isolated them by affinity chromatography on Ni2+agarose. The availability of defined preparations of MSP-1 and its major processing products open up new possibilities for in-depth studies at the structural and functional level of this important protein, including the exploration of MSP-1-based experimental vaccines.  相似文献   

17.
We describe the isolation of two chromosomal DNA fragments from Plasmodium falciparum. These fragments encode the antigenically distinct S antigens of two different P. falciparum isolates, namely FC27 from Papua New Guinea and NF7 from Ghana. The complete nucleotide sequences of both fragments are presented. The fragments are homologous over most of their lengths, including the entire regions flanking the protein coding sequences. Whereas the N- and C-terminal portions of sequences encoding the S antigens are homologous, major portions of the coding sequences are not. The nonhomologous regions are comprised of tandemly repeated sequences, of 33 bp in FC27 and predominantly of 24 bp in NF7. The 33 bp tandem repeats encoded by the FC27 S-antigen gene could not be detected in the NF7 genome. Conversely, the 24 bp tandem repeats encoded by the NF7 S-antigen gene could not be detected in the FC27 genome. The pattern of sequence variation within the repeats of both genes suggests a mechanism for the generation of S-antigen diversity.  相似文献   

18.
The merozoite surface protein-2 (MSP-2) of Plasmodium falciparum comprises repeats flanked by dimorphic domains defining the allelic families FC27 and IC1. Here, we examined sequence diversity at the msp-2 locus in Brazil and its impact on MSP-2 antibody recognition by local patients. Only 25 unique partial sequences of msp-2 were found in 61 isolates examined. The finding of identical msp-2 sequences in unrelated parasites, collected 6-13 years apart, suggests that no major directional selection is exerted by variant-specific immunity in this malaria-endemic area. To examine antibody cross-reactivity, recombinant polypeptides derived from locally prevalent and foreign MSP-2 variants were used in ELISA. Foreign IC1-type variants, such as 3D7 (currently tested for human vaccination), were less frequently recognized than FC27-type and local IC1-type variants. Antibodies discriminated between local and foreign IC1-type variants, but cross-recognized structurally different local IC1-type variants. The use of evolutionary models of MSP-2 is suggested to design vaccines that minimize differences between local parasites and vaccine antigens.  相似文献   

19.
20.
A A Escalante  A A Lal  F J Ayala 《Genetics》1998,149(1):189-202
We have studied the genetic polymorphism at 10 Plasmodium falciparum loci that are considered potential targets for specific antimalarial vaccines. The polymorphism is unevenly distributed among the loci; loci encoding proteins expressed on the surface of the sporozoite or the merozoite (AMA-1, CSP, LSA-1, MSP-1, MSP-2, and MSP-3) are more polymorphic than those expressed during the sexual stages or inside the parasite (EBA-175, Pfs25, PF48/45, and RAP-1). Comparison of synonymous and nonsynonymous substitutions indicates that natural selection may account for the polymorphism observed at seven of the 10 loci studied. This inference depends on the assumption that synonymous substitutions are neutral, which we test by analyzing codon bias and G+C content in a set of 92 gene loci. We find evidence for an overall trend towards increasing A+T richness, but no evidence for mutation bias. Although the neutrality of synonymous substitutions is not definitely established, this trend towards an A+T rich genome cannot explain the accumulation of substitutions at least in the case of four genes (AMA-1, CSP, LSA-1, and PF48/45) because the Gleft and right arrow C transversions are more frequent than expected. Moreover, the Tajima test manifests positive natural selection for the MSP-1 and, less strongly, MSP-3 polymorphisms; the McDonald-Kreitman test manifests natural selection at LSA-1 and PF48/45. We conclude that there is definite evidence for positive natural selection in the genes encoding AMA-1, CSP, LSA-1, MSP-1, and Pfs48/45. For four other loci, EBA-175, MSP-2, MSP-3, and RAP-1, the evidence is limited. No evidence for natural selection is found for Pfs25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号