首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Several classes of drugs that modify serotonin (5-HT) neurotransmission are either currently used, or are being evaluated for their potential use in the treatment of anxiety, schizophrenia, and depression. 5-HT1A agonists are considered potential anxiolytics, while some atypical antipsychotics are potent 5-HT2 antagonists (and also have modest dopamine D2 affinity). Furthermore, there is a diverse group of serotonergic drugs that may be effective antidepressants. Secretion of ACTH, corticosterone/cortisol, prolactin, renin, oxytocin and vasopressin are stimulated by activation of different 5-HT receptor subtypes, while other neurotransmitter receptors also influence the secretion of these hormones. We compared the receptor binding profiles of 5-HT anxiolytics, antipsychotics and antidepressants with their endocrine effects. These comparisons could aid in understanding both the therapeutic and side effects of these drugs.  相似文献   

2.
Patients respond differently to psychotropic drugs, and this is currently a controversial theme among psychiatrists. The effects of 16 psychotropics on cell membrane parameters have been reported. These drugs belong to three major groups used in therapeutic psychiatry: antipsychotics, antidepressants, and anxiolytic/hypnotics. Human platelets, lacking dopamine (D2) receptors (proposed targets of most psychotropics), have been used as a cell model. Here we discuss the effects of these drugs on three metabolic phenomena and also results from Langmuir experiments. Diazepam, in contrast to the remaining drugs, had negligible effects on metabolic phenomena and had no effects in Langmuir experiments. Psychotropic drugs may work through intercalation in membrane phospholipids. It is possible that the fluidity of membranes, rich in essential fatty acids, the content being influenced by diet, could be a contributing factor to the action of psychotropics. This might in turn explain the observed major differences in therapeutic response among patients.  相似文献   

3.
Antipsychotic drugs have various neuropharmacological properties as a result of their structural diversity. Despite their therapeutic benefits, most of the prescribed atypical antipsychotics can induce severe side effects, including weight gain, type II diabetes mellitus, and cardiovascular diseases. Among the developed atypical antipsychotic agents, tetracyclic dibenzodiazepine and thienobenzodiazepine compounds, particularly clozapine and olanzapine, are associated with the greatest weight gain and metabolic disturbances. However, the unique chemical structure of these compounds causes the low risk of side effects reported for typical antipsychotics (e.g. extrapyramidal symptoms and tardive dyskinesia). This report reviews the recent discovery of the potential role of the chemical structure of antipsychotics in their therapeutic properties and metabolic disturbances. By developing structure-activity relationship studies for atypical antipsychotics, we will improve our understanding of the structural modifications of these chemical classes that lead to reduced weight gain, which will be an invaluable step toward the discovery of the next generation of atypical antipsychotics. In this review, we suggest that a novel dibenzodiazepine or thienobenzodiazepine antipsychotic drug with lower affinity for H(1) receptors may significantly advance schizophrenia therapy.  相似文献   

4.
Schizophrenia is a chronic mental illness affecting 0.4% of the population. Existing antipsychotic drugs are mainly used to treat positive symptoms such as hallucinations but have only poor effects on negative symptoms such as cognitive deficits or depression. TREK and TRAAK channels are two P domain background potassium channels activated by polyunsaturated fatty acids and mechanical stress. TREK but not TRAAK channels are regulated by Gs- and Gq-coupled pathways. The inactivation of the TREK-1 but not the TRAAK channel in mice results in a depression-resistant phenotype. In addition, it has been shown that antidepressants such as fluoxetine or paroxetine directly inhibit TREK channel activity. Here we show that different antipsychotic drugs directly inhibit TREK currents with IC(50) values of approximately 1 to approximately 20 microM. No effect is seen on TRAAK channel activity. We conclude that TREK channels might be involved in the therapeutic action of antipsychotics or in their secondary effects. Furthermore, TREK channels could play a role in the pathophysiology of psychiatric disorders such as depression and schizophrenia.  相似文献   

5.
Growing evidence suggests a pivotal role for glutamatergic neurotransmission in the pathophysiology of major depressive disorder and in the action of antidepressants. The main aim of this study was to elucidate the temporal profile of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors expression and their functional regulation in prefrontal/frontal cortex (P/FC) and hippocampus (HC) of rats chronically treated with two different antidepressants: fluoxetine (FLX) and reboxetine (RBX). Rat groups were treated for 1, 2 or 3 weeks with the two drugs and, in additional groups, the treatments were followed by 1 week of drug washout (3 + 1). We found that both drugs induced strong increases in AMPAR subunit protein expression that were time dependent and subunit specific. Especially in P/FC, FLX had the main effect on GluA2 and GluA4 subunits, reaching a 5-fold increase after the drug washout; RBX mostly affected GluA1 and GluA3, reaching a 4-fold increase at the end of the treatment. Furthermore, in HC, the two drugs induced a time specific increase in subunit protein levels, with GluA3 and GluA4 presenting the main changes, albeit with different kinetics. In addition, our data indicate that antidepressants might alter, though by small changes, the R/G editing levels for GluA2, mostly in P/FC, and in turn may induce fine-tuning of glutamate neurotransmission.Overall, we showed that antidepressant treatments induced marked changes in AMPA receptor subunits expression, with time-dependent effects that are consistent with the onset of therapeutic effect of these drugs. These data confirm the involvement of glutamate neurotransmission in the effects of these drugs and further suggest the targeting of AMPA receptors as a therapeutic approach for the treatment of depression.  相似文献   

6.
Conventional antipsychotic drugs, although efficacious in the treatment of mania, have not demonstrated a significant usefulness in the maintenance treatment of bipolar disorder. This has primarily been due to a tendency to induce depressive symptoms and depressive recurrences in this group of patients in the course of long-term administration. However, the picture has changed following the introduction of second-generation antipsychotics. These drugs have pro-depressant properties (if any) that are much weaker than conventional antipsychotics. Furthermore, their tolerability, especially in long-term treatment, is more favorable compared to classical antipsychotics. Clinical observations of the action profile of second-generation antipsychotic drugs in the treatment of schizophrenia have pointed to a possibility of these agents possessing mood-stabilizing properties. The first such suggestion was made by Zarate (1995) in connection with clozapine. The prevention of manic and depressive recurrences in bipolar disorder is a hallmark of the definition of mood-stabilizers.  相似文献   

7.
Ligand-Gated Ion Channels (LGICs) is one of the largest groups of transmembrane proteins. Due to their major role in synaptic transmission, both in the nervous system and the somatic neuromuscular junction, LGICs present attractive therapeutic targets. During the last few years, several computational methods for the detection of LGICs have been developed. These methods are based on machine learning approaches utilizing features extracted solely from the amino acid composition. Here we report the development of LiGIoNs, a profile Hidden Markov Model (pHMM) method for the prediction and ligand-based classification of LGICs. The method consists of a library of 10 pHMMs, one per LGIC subfamily, built from the alignment of representative LGIC sequences. In addition, 14 Pfam pHMMs are used to further annotate and classify unknown protein sequences into one of the 10 LGIC subfamilies. Evaluation of the method showed that it outperforms existing methods in the detection of LGICs. On top of that, LiGIoNs is the only currently available method that classifies LGICs into subfamilies.The method is available online at http://bioinformatics.biol.uoa.gr/ligions/.  相似文献   

8.
Even though commercialized anticancer drugs are now produced by pharmaceutical companies, most of them were originally obtained from natural sources, and more particularly from plants. Indeed, many structurally diverse compounds isolated from plants or marine flora have been purified and synthesized for their anticancer bioactivity. Among these, several molecules belong to the class of anticancer drugs which target the microtubule cytoskeleton, either by stabilizing it or destabilizing it. To characterize the activity of these drugs and to understand in which physiological context they are more likely to be used as therapeutic agents, it is necessary to fully determine their interaction with tubulin. Understanding the molecular basis of their effects on microtubule cytoskeleton is an important step in designing analogs with greater pharmacological activity and with fewer side effects. In addition, knowing the molecular mechanism of action of each drug that is already used in chemotherapy protocols will also help to find strategies to circumvent resistance. By taking examples of known anti-tubulin plant derived drugs, we show how identification of microtubule targeting agents and further characterization of their activity can be achieved combining biophysical and biochemical approaches. We also illustrate how continuing in depth study of molecules with already known primary mechanisms of action can lead to the discovery of new targets or biomarkers which can open new perspectives in anticancer strategies.  相似文献   

9.
Antidepressants and antipsychotics are psychiatric agents used for the treatment of various types of psychiatric diseases. Although currently among the most commonly prescribed drugs, their effectiveness and adverse effects are the topic of many studies and controversial claims. Here we generate QSAR models based on compounds series including 20 drugs recommended for two critical psychiatric diseases: depression and schizophrenia and we use these QSAR models to predict the biological activity of these 20 antidepressants and antipsychotics. We establish the membrane ions' contributions (sodium, potassium, calcium and iron) mediated by water to the antagonism of these drugs at the 5-HT1A receptor. The reliability of our QSAR models in predicting compounds activity is indicated by significant values for cross-validated correlation q2 (0.60-0.76) and fitted correlation r2 (0.96-0.98) coefficients. Our results indicate that potassium, calcium and iron play a key role for the antagonistic activity of drugs at the 5-HT1A receptor. Moreover, based on the established QSAR equations, we analysed 24 new escitalopram derivatives as possibly improved antidepressants targeting the 5-HT1A receptor. We identified that the presence of methyl groups and hydrogen atoms improves antidepressant activity while the simultaneous presence of ethyl, propyl or halogens decreased drastically antidepressant activity at the 5-HT1A site.  相似文献   

10.
Invasive mycoses are associated with a high mortality rate, and their incidence is increased in immunologically deficient patients. From a diagnostic and therapeutic perspective, these infections represent a significant challenge to medicine. In addition to new antifungal agents, drug combinations are an important therapeutic resource, which might be exploited clinically, owing to the multiplicity of fungal targets against which currently available agents are active. In this review, we examine the experimental data regarding the combination of conventional antifungal agents with cytokines, antibacterial agents, calcineurin inhibitors and drugs under development characterized by novel mechanisms of action.  相似文献   

11.
Antidepressants have insufficient effect in 20-40% of patients treated for depressive disorders. This is particularly true for psychotic and agitated depression. When administered on a long-term basis, antidepressants cause a switch into mania in 25-40% of patients and induce rapid cycling. Classical antipsychotics have exhibited good therapeutic efficacy in the treatment of various forms of depression, especially psychotic and agitated forms, albeit burdened with many, above all extrapyramidal, side effects. When administered over long periods of time, classical antipsychotics may have a depressogenic effect. Second-generation antipsychotics have started to be increasingly used in this indication for a variety of reasons including: their antidepressant effect attributable to raised concentrations of catecholamines in the prefrontal cortex, their impact on serotonin transmission, their antipsychotic effect due to their mode of action including the mesolimbic blockade of dopamine D2 receptors, and the low incidence of extrapyramidal and other side effects. The following text encompasses the results of controlled trials using second-generation antipsychotics in the treatment of acute depressive disorders.  相似文献   

12.
Kumar  Raj  Holian  Oksana  Cook  Brian  Roshani  Pash 《Neurochemical research》1997,22(1):1-10
Lipid soluble psychotropics inhibit brain PKC-catalyzed phosphorylation of exogenous and endogenous proteins to varying degrees. These drugs were better inhibitors of Ca2+/PL-dependent phosphorylation of histones (H) than that of Ca2+/PL-independent protamine sulfate (PrSO4): antidepressants/antipsychotics displayed IC50 of 0.1 to 0.16 mM towards H and 0.3 to 4.0 mM towards PrSO4 phosphorylation. Sedatives/anesthetics were less efficient inhibitors with much higher IC50 of 1.3 to 40 mM. Phosphorylation of a Ca2+-dependent but PL-independent p80 protein and of a cluster of Ca2+/PL-dependent proteins, p16-20, in brain was also inhibited by the antidepressants/antipsychotics but not by the sedatives/anesthetics. Phorbol ester binding studies revealed that these inhibitors do not compete for DAG binding site(s) on PKC. However, both drug-PL and drug-PKC interactions seem to be relevant in their mechanism of action. Furthermore, our data suggest that the hydrophobic nature of the propanamine side chain or its N-methylated version as well as the tricyclic nucleus influence drug-PKC interaction. Although many of these drugs have other accepted modes of action, modulation of PKC activity in brain, may be yet another aspect to be considered in their mechanism of action.  相似文献   

13.
Antipsychotic drugs are tranquilizing psychiatric medications primarily used in the treatment of schizophrenia and similar severe mental disorders. So far, most of these drugs have been discovered without knowing much on the molecular mechanisms of their actions. The available large amount of pharmacogenetics, pharmacometabolomics, and pharmacoproteomics data for many drugs makes it possible to systematically explore the molecular mechanisms underlying drug actions. In this study, we applied a unique network-based approach to investigate antipsychotic drugs and their targets. We first retrieved 43 antipsychotic drugs, 42 unique target genes, and 46 adverse drug interactions from the DrugBank database and then generated a drug-gene network and a drug-drug interaction network. Through drug-gene network analysis, we found that seven atypical antipsychotic drugs tended to form two clusters that could be defined by drugs with different target receptor profiles. In the drug-drug interaction network, we found that three drugs (zuclopenthixol, ziprasidone, and thiothixene) tended to have more adverse drug interactions than others, while clozapine had fewer adverse drug interactions. This investigation indicated that these antipsychotics might have different molecular mechanisms underlying the drug actions. This pilot network-assisted investigation of antipsychotics demonstrates that network-based analysis is useful for uncovering the molecular actions of antipsychotics.  相似文献   

14.
15.
Twenty years after its discovery, the beta-adrenergic blocking agent propranolol continues to interest pharmacologists and clinicians. Its therapeutic profile has extended to areas beyond the purview of the cardiovascular system, and its ocular and central nervous system effects have been well documented. In addition, it still remains a very good pharmacological tool to map out the adrenergic beta-receptors in the body, and stereoisomers of propranolol and other beta-blockers serve as valuable agents to distinguish between the effects related to beta-adrenoceptors and those which are not. The primary purpose of this review is to summarize the evidence indicating that beta-adrenergic blocking agents lack stereoselectivity in some of their effects, including several of considerable therapeutic importance. Because many pharmacological actions of propranolol followed a nonsteroselective pattern, the involvement of beta-adrenoceptors in them was questioned and this led to the search for alternate mechanisms to explain these effects. Studies with propranolol and some related drugs indicated the involvement of a cholinergic mechanism in their antiarrhythmic, ocular hypotensive and some central effects. Also, a presynaptic inhibitory effect at the skeletal neuromuscular junction has been suggested to explain the benefical effect of propranolol and other beta-blockers in tremor. Biochemical studies with these drugs revealed their inhibitory action on the cholinesterase enzyme in blood and other tissues like myocardium and brain. It is thus hypothesized that modulation of cholinergic neurotransmission by propranolol could explain some of its nonstereoselective actions and open new vistas in propranolol pharmacodynamics.  相似文献   

16.
Main problems of neuropharmacology and its important component, psychopharmacology, are discussed in the communication. Examples of new approaches in the studies of the mechanisms of the effects of psychopharmacological agents are presented; in particular, the agents affecting functions of neuropeptide systems are described. Possibilities for creation of new psychopharmacological drugs and possibilities for their use as analyzers in the study of neurophysiological functions and pathological processes in the nervous system are discussed.  相似文献   

17.
The interactions of three therapeutic agents, viz. the antipsychotics HPD and CPZ, and the antineoplastic anthracycline DOX, with oxidatively modified phospholipids were studied by monitoring the quenching of fluorescence of an incorporated pyrene-labeled lipid derivative. All three drugs bound avidly to the two oxidized PCs bearing either an aldehyde or carboxylic function at the end of the sn-2 nonanoyl chain, with the highest affinity measured between CPZ and the latter oxidized lipid. Subsequent dissociation of the above drugs from the oxidized lipids by DNA, acidic phospholipids, and NaCl revealed the binding of these drugs with the aldehyde lipid to be driven by hydrophobicity similarly to their binding to lysophosphatidylcholine, whereas a significant contribution of electrostatics was evident for the lipid with the carboxylic moiety. These results connect to previous experimental data, demonstrating the induction by these drugs of oxidative stress and binding to membrane phospholipids. These issues are elaborated with reference to their clinical use and side effects.  相似文献   

18.
Immunosuppressive drugs have revolutionized organ transplantation and improved the therapeutic management of autoimmune diseases. The development of immunosuppressive drugs and understanding of their action traditionally has been focused on lymphocytes, but recent evidence indicates that these agents interfere with immune responses at the earliest stage, targeting key functions of dendritic cells (DCs). Here, we review our present understanding of how classical and new immunosuppressive agents interfere with DC development and function. This knowledge might provide a rational basis for the selection of immunosuppressive drugs in different clinical settings and for the generation of tolerogenic DCs in the laboratory.  相似文献   

19.
Antipsychotic drugs are divided into two groups: typical and atypical. Recent clinical studies show atypical antipsychotics have advantages over typical antipsychotics in a wide variety of neuropsychiatric conditions, in terms of greater efficacy for positive and negative symptoms, beneficial effects on cognitive functioning, and fewer extra pyramidal side effects in treating schizophrenia. As such, atypical antipsychotics may be effective in the treatment of depressive symptoms associated with psychotic and mood disorders, posttraumatic stress disorder, and psychosis in Alzheimer’s disease. In this paper, we describe the effects and potential neurochemical mechanisms of action of atypical antipsychotics in several animal models showing memory impairments and/or non-cognitive behavioral changes. The data provide new insights into the mechanisms of action of atypical antipsychotics that may broaden their clinical applications.  相似文献   

20.
Under normal metabolic conditions glucose is an important energy source for the mammalian brain. Positron Emission Tomography studies of the central nervous system have demonstrated that tricyclic antidepressant medications alter cerebral metabolic function. The mode by which these drugs perturb metabolism is unknown. In the present study the interactions of tricyclic antidepressants with the GLUT1 glucose transport protein is examined. Amitriptyline, nortriptyline, desipramine, and imipramine all inhibit the influx of 3-O-methyl glucose into resealed erythrocytes. This inhibition is observed with drug concentrations in the millimolar range. All four antidepressants also noncompetitively displace cytochalasin B binding to GLUT1. The K(I) for this displacement ranges from 0.56 to 1.43 millimolar. This value is in a range greater than that associated with clinical doses and this effect may not be directly applicable to side effects observed with normal use. The observed interaction of these drugs with GLUT1 may reflect an affinity for other glucose-transport or glucose-binding proteins, and may possibly contribute to tricyclic antidepressant toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号