首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate a role for the cytoskeletal protein actin in post-traumatic apoptotic cell death, the ability of actin-containing tissue extracts to inhibit exogenous DNase I was evaluated. In addition, cortical, hippocampal and thalamic extracts were examined for caspase-mediated actin cleavage and changes in actin polymerization state. Rats were anesthetized, subjected to lateral fluid percussion brain injury of moderate severity, and euthanized at 1 h, 6 h, 24 h, 1 week or 3 weeks post-injury (n = 3 per time-point). Tissue extracts from all brain regions of sham (uninjured) animals inhibited exogenous DNase I activity to a significant extent. However, inhibition of DNase I was significantly reduced at 1 h and 6 h in the injured hippocampus, and at 1 h, 6 h and 3 weeks in the thalamus. DNase I in cortical extracts of all injured animals was inhibited to a similar extent as that in uninjured animals. Actin fragments consistent with caspase-mediated proteolysis were observed in immunoblots of the injured hippocampus and thalamus at 1 h and 24 h, respectively, and were present up to 3 weeks post-injury. Transient actin hyperpolymerization was observed at 1 and 6 h post-injury in the thalamus and hippocampus, while actin depolymerization was observed at 1 and 3 weeks in the cortex and thalamus. Collectively our data suggest that DNase I disinhibition following brain trauma is associated predominantly with actin hyperpolymerization but also with actin depolymerization and concomitant caspase-mediated actin proteolysis.  相似文献   

2.
A study was made of the effects of high mesencephalic transection (cerveau isolé) and low doses of pentobarbital on the cortical synchronizations elicited in acute immobilized cats by (a) low frequency stimulation of the lateral hypothalamus (HL) and nucleus ventralis anterior thalami (VA) and (b) by low and high frequency stimulation of the laterobasal preoptic region (RPO) and olfactory tubercle (TbOf). The results obtained were as follows: (1) The synchronizations induced by basal forebrain stimulations were found to survive in acute cerveau isolé cats, moreover, even a facilitation of the synchronizing effect were observed. (2) A gradual facilitation was observed upon TbOf and RPO stimulation, while in the case of VA and HL stimulations, the facilitation appeared immediately after the transection. (3) Low doses of pentobarbital depressed the cortical effects of TbOf stimulation, while an increase of the synchronizing effect of low frequency VA and HL stimulation was found. The observations suggested that (i) the synchronizing mechanism in the ventral part of the basal forebrain (RPO and TbOf) differs from that of the thalamus and HL; (ii) the basal forebrain synchronizing mechanism is effective without the contribution of the brain stem; (iii) the mechanism responsible for the synchronizing effect of low frequency HL stimulation is similar as that described for the thalamus.  相似文献   

3.
Effects of stimulation of the claustrum and caudate nucleus in the neocortex and various deep brain structures were studied in acute experiments on unanesthetized cats immobilized with tubocurarine. A rhythmic after discharge appeared in neocortical areas 4–7 and 18 (according to Reinoso-Suarez' atlas), and also in the caudate nucleus and various parts of the thalamus. A similar discharge also was observed in the claustrum itself. Diencephalic brain section at the level of the ventral anterior nucleus weakened but did not completely abolish the cortical rhythmic after-discharge in the anterior regions of the neocortex evoked by stimulation of the claustrum. This discharge was completely blocked after sagittal brain section between the claustrum and the rest of the thalamus.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 15, No. 2, pp. 121–127, March–April, 1983.  相似文献   

4.
At the onset of dynamic movements excitation of the motor cortex (M1) is spatially restricted to areas representing the involved muscles whereas adjacent areas are inhibited. The current study elucidates whether the cortical motor command for dynamic contractions is also restricted to a certain population of cortical neurons responsible for the fast corticospinal projections. Therefore, corticospinal transmission was assessed with high temporal resolution during dynamic contractions after both, magnetic stimulation over M1 and the brainstem. The high temporal resolution could be obtained by conditioning the soleus H-reflex with different interstimulus intervals by cervicomedullary stimulation (CMS-conditioning) and transcranial magnetic stimulation (TMS) of M1 (M1-conditioning). This technique provides a precise time course of facilitation and inhibition. CMS- and M1-conditioning produced an 'early facilitation' of the H-reflex, which occurred around 3 ms earlier with CMS-conditioning. The early facilitation is believed to be caused by activation of direct monosynaptic projections to the spinal motoneurons. CMS-conditioning resulted in a subsequent 'late facilitation', which is considered to reflect activity of slow-conducting and/or indirect corticospinal pathways. In contrast, M1-conditioning produced a 'late dis-facilitation' or even 'late inhibition'. As the late dis-facilitation was only seen following M1- but not CMS-conditioning, it is argued that cortical activation during dynamic tasks is restricted to fast, direct corticospinal projections whereas corticomotoneurons responsible for slow and/or indirectly projecting corticospinal pathways are inhibited. The functional significance of restricting the descending cortical drive to fast corticospinal pathways may be to ensure a temporally focused motor command during the execution of dynamic movements.  相似文献   

5.
The changes in intracellular oxygen tension and energy metabolism of the cat brain cortex were studied by surface fluororeflectometry during haemorrhagic shock. The results may be summarized as follows. (a) Intracellular oxygen tension, i.e. the maximum cortical NAD reduction obtained during nitrogen gas inhalation decreased gradually during the hypovolaemic phase of shock and finally, the brain cortex became ischaemic. (b) Partial uncoupling of the cerebrocortical mitochondrial respiration and oxidative phosphorylation appeared in the very early period of bleeding, as indicated by the overshot of the cortical NAD/NADH redox state towards oxidation subsequent to the cessation of nitrogen gas inhalation. Partial uncoupling of mitochondrial respiration and oxidative phosphorylation became more pronounced during the later phases of bleeding, finally, the mitochondrial electron transport stopped. In line with these changes the frequency and the amplitude of ECoG decreased gradually and markedly during the hypovolaemic phase of shock. (c) Microcirculation and energy metabolism of the cat brain cortex were severely and irreversibly damaged during the hypovolaemic phase of shock. This was clearly shown by the fact that in the majority of experiments the nitrogen anoxia after reinfusion failed to bring about changes in the cortical NAD/NADH redox state and the ECoG changes occurred during bleeding did not improve after reinfusion. It is concluded that the early disturbances of cerebrocortical energy metabolism play an important role in the development of neural and vascular lesions of the brain that occur during haemorrhagic shock.  相似文献   

6.
The expression, development pattern, spatiotemporal distribution, and function of TrkB receptors were investigated during the postnatal brain development of the opossum. Full‐length TrkB receptor expression was detectable in the newborn opossum, whereas three different short forms that are expressed in the adult brain were almost undetectable in the newborn opossum brain. The highest level of full‐length TrkB receptor expression was observed at P35, which corresponds to the time of eye opening. We found that in different brain structures, TrkB receptors were localized in various compartments of cells. The hypothalamus was distinguished by the presence of TrkB receptors not only in cell bodies but also in the neuropil. Double immunofluroscent staining for TrkB and a marker for the identification of the cell phenotype in several brain regions such as the olfactory bulb, hippocampus, thalamus, and cerebellum showed that unlike in eutherians, in the opossum, TrkB receptors were predominantly expressed in neurons. A lack of TrkB receptors in glial cells, particularly astrocytes and oligodendrocytes, provides evidence that TrkB receptors can play a functionally different role in marsupials than in eutherians. The effects of TrkB signaling on the development of cortical progenitor cells were examined in vitro using shRNAs. Blockade of the endogenous TrkB receptor expression induced a decrease in the number of progenitor cells proliferation, whereas the number of apoptotic progenitor cells increased. These changes were statistically significant but relatively small. In contrast, TrkB signaling was strongly involved in regulation of the cortical progenitor cell differentiation process. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 707–722, 2014  相似文献   

7.
Dolichol in Human Brain: Regional and Developmental Aspects   总被引:3,自引:2,他引:1  
Distinct regional differences in dolichol content were defined in human brain from 15 to 76 years of age. Concerning the regional distribution of dolichol, levels were: higher in cortical gray matter than in subcortical white matter, highest among cortical regions in temporal gray matter, highest among all brain regions in thalamus, and lowest among all brain regions in lower brain stem and spinal cord. The developmental changes in the contents of dolichol were found to be different among brain regions. For example, among regions with the highest levels of dolichol, in thalamus there was a six to sevenfold increase, but in parietal gray matter, only a 2.5-fold increase. Regional and developmental changes in the proportions of the individual molecular species (isoprenologues) of dolichol were also observed. The findings indicate that the metabolism of dolichol is not uniform among regions of developing and aging human brain and may have implications for the role of dolichol in normal and diseased human brain.  相似文献   

8.
The antigravity soleus muscle (Sol) is crucial for compensation of stance perturbation. A corticospinal contribution to the compensatory response of the Sol is under debate. The present study assessed spinal, corticospinal, and cortical excitability at the peaks of short- (SLR), medium- (MLR), and long-latency responses (LLR) after posterior translation of the feet. Transcranial magnetic stimulation (TMS) and peripheral nerve stimulation were individually adjusted so that the peaks of either motor evoked potential (MEP) or H reflex coincided with peaks of SLR, MLR, and LLR, respectively. The influence of specific, presumably direct, corticospinal pathways was investigated by H-reflex conditioning. When TMS was triggered so that the MEP arrived in the Sol at the same time as the peaks of SLR and MLR, EMG remained unaffected. Enhanced EMG was observed when the MEP coincided with the LLR peak (P < 0.001). Similarly, conditioning of the H reflex by subthreshold TMS facilitated H reflexes only at LLR (P < 0.001). The earliest facilitation after perturbation occurred after 86 ms. The TMS-induced H-reflex facilitation at LLR suggests that increased cortical excitability contributes to the augmentation of the LLR peaks. This provides evidence that the LLR in the Sol muscle is at least partly transcortical, involving direct corticospinal pathways. Additionally, these results demonstrate that approximately 86 ms after perturbation, postural compensatory responses are cortically mediated.  相似文献   

9.
Cortico-thalamic interactions are known to play a pivotal role in many brain phenomena, including sleep, attention, memory consolidation and rhythm generation. Hence, simple mathematical models that can simulate the dialogue between the cortex and the thalamus, at a mesoscopic level, have a great cognitive value. In the present work we describe a neural mass model of a cortico-thalamic module, based on neurophysiological mechanisms. The model includes two thalamic populations (a thalamo-cortical relay cell population, TCR, and its related thalamic reticular nucleus, TRN), and a cortical column consisting of four connected populations (pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow and fast kinetics). Moreover, thalamic neurons exhibit two firing modes: bursting and tonic. Finally, cortical synapses among pyramidal neurons incorporate a disfacilitation mechanism following prolonged activity. Simulations show that the model is able to mimic the different patterns of rhythmic activity in cortical and thalamic neurons (beta and alpha waves, spindles, delta waves, K-complexes, slow sleep waves) and their progressive changes from wakefulness to deep sleep, by just acting on modulatory inputs. Moreover, simulations performed by providing short sensory inputs to the TCR show that brain rhythms during sleep preserve the cortex from external perturbations, still allowing a high cortical activity necessary to drive synaptic plasticity and memory consolidation. In perspective, the present model may be used within larger cortico-thalamic networks, to gain a deeper understanding of mechanisms beneath synaptic changes during sleep, to investigate the specific role of brain rhythms, and to explore cortical synchronization achieved via thalamic influences.  相似文献   

10.
Whether the fusimotor system contributes to reflex gain changes during reinforcement maneuvers is re-examined in the light of new data. Recently, from direct recordings of spindle afferent activity originating from ankle flexor muscles, we showed that mental computation increased the muscle spindle mechanical sensitivity in completely relaxed human subjects without concomitant alpha-motoneuron activation, providing evidence for selective fusimotor drive activation. In the present study, the effects of mental computation were investigated on monosynaptic reflexes elicited in non-contracting soleus muscle either by direct nerve stimulation (Hoffmann reflex, H) or by tendon tap (Tendinous reflex, T). The aim was to relate the time course of the changes in reflex size to the increase in spindle sensitivity during mental task in order to explore whether fusimotor activation can influence the size of the monosynaptic reflex. The results show changes in reflex amplitude that parallel the increase in muscle spindle sensitivity. When T-reflex is consistently facilitated during mental effort, the H-reflex is either depressed or facilitated, depending on the subjects. These findings suggest that the increased activity in muscle spindle primary endings may account for mental computation-induced changes in both tendon jerk and H-reflex. The facilitation of T-reflex is attributed to the enhanced spindle mechanical sensitivity and the inhibition of H-reflex is attributed to post-activation depression following the increased Ia ongoing discharge. This study supports the view that the fusimotor sensitization of muscle spindles is responsible for changes in both the mechanically and electrically elicited reflexes. It is concluded that the fusimotor drive contributed to adjustment of the size of tendon jerk and H-reflex during mental effort. The possibility that a mental computation task may also operate by reducing the level of presynaptic inhibition is discussed on the basis of H-reflex facilitation.  相似文献   

11.
There is growing interest in serotonin transporter (5-HTT) function in the human brain, since alteration in 5-HTT has been suggested in a variety of neurophychiatric disorders. Age-related decline in postsynaptic 5-HT receptors has been demonstrated in postmortem human studies and in vivo imaging studies, and has been assumed to be related to changes in mental function in the normal aging process. However, few studies have investigated the aging effect on 5-HTT in human brain in vivo, since the availability of suitable ligands has been limited. To investigate the aging effect on 5-HTT in living human brain, we performed positron emission tomography (PET) scans with a selective ligand for 5-HTT, [11C](+)McN5652. We examined 28 healthy male volunteers aged between 20 and 79 years. The uptake was quantified in the thalamus and midbrain by graphical analysis with the cerebellum as a reference tissue, and binding potential (BP) was used for the index of 5-HTT binding. There was a significant age-related decline in BP in the thalamus and midbrain. The decline in [11C](+)McN5652 binding was 9.6% per decade in the thalamus and 10.5% per decade in the midbrain.  相似文献   

12.
Vasopressin was extracted and measured from various areas of rat brain. Vasopressin in quantities many times that in circulating blood was found in most areas of brain except for cerebellum. The highest concentration of vasopressin were found in the amygdala, septum, thalamus and striatum. Homozygous Brattleboro rat brain contained negligible amounts of vasopressin. The rat brain extract reacted identically with standard vasopressin in the radioimmunoassay over a 40-fold dilution range and migrated with vasopressin on Sephadex G-25 chromatography.  相似文献   

13.
Age-related changes in regional brain mitochondria from Fischer 344 rats   总被引:1,自引:0,他引:1  
Brain mitochondrial function has been posited to decline with aging. In order to test this hypothesis, cortical and striatal mitochondria were isolated from Fischer 344 rats at 2, 5, 11, 24 and 33 months of age. Mitochondrial membrane potential remained stable through 24 months, declining slightly in mitochondria from both brain regions at 33 months. The ability of calcium to induce mitochondrial swelling and depolarization, characteristics of the permeability transition, was remarkably stable through 24 months of age and increased at advanced ages only for cortical, but not striatal, mitochondria. Striatal mitochondria were more sensitive to calcium than were cortical mitochondria throughout the first 2 years of life. A two-fold increased resistance to calcium was observed in striatal mitochondria between 5 and 11 months. Although these measurements do demonstrate changes in mitochondrial function with aging, the changes in polarization are relatively small and the increased cortical susceptibility to the permeability transition only occurred at very advanced ages. Thus mitochondrial decline with advanced age depends upon brain region.  相似文献   

14.
The regional distribution of the dopamine and serotonin uptake sites in human brain have been assessed and compared with the distribution of the transmitters and their metabolites measured in the same brains and also with a limited regional distribution of the uptake sites in rat and sheep brain. The affinity of the uptake sites for both transmitters was determined and found to be c. 0.2 μ M in all 3 species. Most dopamine uptake in all species was in caudate and putamen samples. Many regions of the human brain showed no dopamine uptake and little dopamine uptake was seen in sheep cortex or nigral preparations. Dopamine and metabolite concentrations were highest in the caudate, putamen and substantia nigra. Most serotonin uptake was seen in the hypothalamus in all 3 species; less was observed in the striatal regions; the cortical and nigral preparations of sheep brain showed little serotonin uptake though cortical preparations of rat brain had high levels of uptake. In the human brain, other regions did not show serotonin uptake. Highest concentrations of serotonin were found in the substantia nigra and medulla, intermediate concentrations in the putamen, globus pallidus, hypothalamus, olfactory tubercle and thalamus; very low concentrations of serotonin were found in other regions. The use of the human uptake site for pharmacological studies and as a marker for monoaminergic afferents in human health and disease is discussed.  相似文献   

15.
The aim of this study was to investigate the functional role of the cortical projections to gracile nucleus. In unanesthetized cats single nuclear units projecting to the thalamus were tested for microstimulation of cortical foci (area 4) able to evoke single joint movements in contralateral hindlimb. A very significant percentage of gracile cells was influenced, very often in excitatory manner, if their receptive field was overlaying or very close to the joint controlled by a given cortical focus. Conversely, when the location of the receptive field was more distant, the percentage of responses and the incidence of excitatory effects decreased, inhibitions occurring more frequently. From a functional point of view, such an organization of the cortico-gracile control could be effective in modulating transmission of exteroceptive information from the region of the motor target (facilitation) as well as from adjacent ones (suppression). This arrangement could provide an higher resolution of afferent messages, in relation with the cortically induced movements.  相似文献   

16.
EEG and field potential rhythms established in the cortex and thalamus may accommodate the propagation of seizures. This article describes the interaction between thalamus and cortex during pentylenetetrazol (PTZ) seizures in rats with and without prior treatment with ethosuximide (ESM), a well-known antiepileptic drug (AED) that raises the threshold for seizures, was given before PTZ. The AED was given before PTZ convulsant administration. We track this thalamo-cortical association with a novel measure we have called the cross-bicoherence gain, or BISCOH. This quantity allows us to measure the spectral coherence in a purely higher order spectralmethodology. BISCOH is able to track the formation of nonlinearities at specific frequencies in the recorded EEG. BISCOH showed a strong increase in low alpha wave harmonic generationat 10 and 12.5 Hz after ESM treatment (p < 0.02 and p < 0.007, respectively). Conventional coherence failed to show distinctive and significant changes in thalamo-cortical coupling after ESM treatment at those frequencies and instead showed changes at 5 Hz. This rise in cortical rhythms is evidence of harmonic generation or new frequency formation in the thalamo-cortical system withAED therapy. BISCOH could become a powerful tool in unraveling changes in coherence due to neuroelectric modulation resulting from drug treatment or electrical stimulation.  相似文献   

17.
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid‐β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age‐related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2‐, 7‐, and 23‐month‐old mice revealed significant age‐related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age‐related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD.  相似文献   

18.
The trigemino-cardiac reflex (TCR) may be classified as a sub-phenomenon in the group of the so-called 'oxygen-conserving reflexes'. Within seconds after the initiation of such a reflex, there is neither a powerful and differentiated activation of the sympathetic system with subsequent elevation in regional cerebral blood flow (CBF) with no changes in the cerebral metabolic rate of oxygen (CMRO2) or in the cerebral metabolic rate of glucose (CMRglc). Such an increase in regional CBF without a change of CMRO2 or CMRglc provides the brain with oxygen rapidly and efficiently and gives substantial evidence that the TCR is an oxygen-conserving reflex. This system, which mediates reflex protection projects via currently undefined pathways from the rostral ventrolateral medulla oblongata to the upper brainstem and/or thalamus which finally engage a small population of neurons in the cortex. This cortical centre appears to be dedicated to reflexively transduce a neuronal signal into cerebral vasodilatation and synchronization of electrocortical activity. Sympathetic excitation is mediated by cortical-spinal projection to spinal pre-ganglionic sympathetic neurons whereas bradycardia is mediated via projections to cardiovagal motor medullary neurons. The integrated reflex response serves to redistribute blood from viscera to brain in response to a challenge to cerebral metabolism, but seems also to initiate a preconditioning mechanism. Better and more detailed knowledge of the cascades, transmitters and molecules engaged in such endogenous (neuro) protection may provide new insights into novel therapeutic options for a range of disorders characterized by neuronal death and into cortical organization of the brain.  相似文献   

19.
The present study hypothesized that if subliminal facilitation of the ankle flexor motoneurons is related to preparatory state to a mechanical perturbation while standing, different standing conditions such as standing with eyes-closed or touching a bar should have different influences on the facilitation levels. While the subjects were maintaining an upright stance posture, sudden drops of support surface were applied several times in the following four different conditions: (1) standing with eyes-open, (2) with eyes-closed, (3) with eyes-open and warning of the drop, and (4) with eyes-open and touching a bar with both hands. The results demonstrated that the EMG responses in the ankle flexor TA muscle increased in the eyes-closed condition, while it reduced in the conditions, such as that the subjects had prior warning or touched a bar. The preparatory state of supraspinal neural centers was suggested to be related to the observed variation in the EMG responses.  相似文献   

20.
The thalamus was electrically stimulated in unrestrained rats with implanted cortical and subcortical electrodes. Single pulses often triggered rhythmic cortical activity identical with the 8--9/sec spike episodes which occur spontaneously in rats in the walking state. In rhythmic stimulation of the thalamus, self-sustained 3/sec spike-wave paroxysmal activity, with partial clonic jerks, was observed. Specific and non-specific thalamic nuclei participated in the production of these activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号