首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of 12-O-tetradecanoylphorbol-13-acetate to mouse skin led to a dramatic induction of epidermal ornithine decarboxylase (EC 4.1.1.17; L-ornithine carboxy-lyase) activity. The degree of induction was remarkably depressed by prior treatment of skin with indomethacin, acetylsalicylic acid or flufenamic acid, inhibitors of prostaglandin synthesis. In contrast, dexamethasone, a steroidal anti-inflammatory drug, was ineffective. The inhibition of tumor promoter-induced ornithine decarboxylase activity by the non-steroidal anti-inflammatory drugs was completely counteracted by treatment with prostaglandin E1 and E2 but not with prostaglandin F or F.  相似文献   

2.
3.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate induces tumour promotion, inflammation, cell proliferation and prostaglandin release. Recent reports suggest that the prostaglandins released by 12-O-tetradecanoylphorbol 13-acetate (TPA) initiate a cascade of events leading to polyamine synthesis and cell proliferation. In experiments designed to test this contention, it was found that addition of TPA (1 microM to 1 nM) to confluent mouse 3T3 fibroblasts successively caused the release of prostaglandins E2 and I2, induction of the enzyme ornithine decarboxylase (EC 4.1.1.17), stimulation of [3H]thymidine incorporation into DNA, and cell proliferation. Pretreatment of the cells with the anti-inflammatory steroid dexamethasone (1 microM) or the non-steroidal anti-inflammatory drug indomethacin (1 microM) inhibited TPA-induced prostaglandin release. However, dexamethasone enhanced the other effects of TPA, whereas indomethacin was ineffective. Addition of prostaglandin E2 to the cultures did not induce ornithine decarboxylase activity and cell proliferation. Pretreatment of the cells with 1,3-diaminopropane (1 mM) or alpha-methylornithine (5 mM), inhibitors of polyamine synthesis, decreased TPA-induced ornithine decarboxylase activity without affecting DNA synthesis. TPA stimulated [3H]thymidine incorporation into DNA, even when the ornithine decarboxylase activity was completely blocked. These data suggest that the proliferative effect of TPA on 3T3 cells is independent of prostaglandin release and polyamine synthesis.  相似文献   

4.
Recently, it has been reported that inflammatory processes are associated with the pathophysiology of Alzheimer's disease and that treatment of non-steroidal anti-inflammatory drugs reduce the risk for Alzheimer's disease. In the present study, we examined nitric oxide radical quenching activity of non-steroidal anti-inflammatory drugs and steroidal drugs using our established direct in vitro nitric oxide radical detecting system by electron spin resonance spectrometry. The non-steroidal anti-inflammatory drugs, aspirin, mefenamic acid, indomethacin and ketoprofen directly and dose-dependently scavenged generated nitric oxide radicals. In experiments of nitric oxide radical donor, NOC18-induced neuronal damage, these four non-steroidal drugs significantly prevented the NOC18-induced reduction of cell viability and apoptotic nuclear changes in neuronal cells without affecting the induction of inducible nitric oxide synthase-like immunoreactivity. However, ibuprofen, naproxen or steroidal drugs, which had less or no scavenging effects in vitro, showed almost no protective effects against NOC18-induced cell toxicity. These results suggest that the protective effects of the former four non-steroidal anti-inflammatory drugs against apoptosis might be mainly due to their direct nitric oxide radical scavenging activities in neuronal cells. These direct NO. quenching activities represent novel effects of non-steroidal anti-inflammatory drugs. Our findings identified novel pharmacological mechanisms of these drugs to exert not only their anti-inflammatory, analgesic, antipyretic activities but also neuroprotective activities against neurodegeneration.  相似文献   

5.
Annexin I is a glucocorticoid-induced mediator with anti-inflammatory activity in animal models of arthritis. We studied the effects of a bioactive annexin I peptide, ac 2-26, dexamethasone (DEX), and interleukin-1beta (IL-1beta) on phospholipase A2 (PLA2) and cyclooxygenase (COX) activities and prostaglandin E2 (PGE2) release in cultured human fibroblast-like synoviocytes (FLS). Annexin I binding sites on human osteoarthritic (OA) FLS were detected by ligand binding flow cytometry. PLA2 activity was measured using 3H-arachidonic acid release, PGE2 release and COX activity by ELISA, and COX2 content by flow cytometry. Annexin I binding sites were present on human OA FLS. Annexin I peptide ac 2-26 exerted a significant concentration-dependent inhibition of FLS constitutive PLA2 activity, which was reversed by IL-1beta. In contrast, DEX inhibited IL-1beta-induced PLA2 activity but not constitutive activity. DEX but not annexin I peptide inhibited IL-1beta-induced PGE2 release. COX activity and COX2 expression were significantly increased by IL-1beta. Annexin I peptide demonstrated no inhibition of constitutive or IL-1beta-induced COX activity. DEX exerted a concentration-dependent inhibition of IL-1beta-induced but not constitutive COX activity. Uncoupling of inhibition of PLA2 and COX by annexin I and DEX support the hypothesis that COX is rate-limiting for PGE2 synthesis in FLS. The effect of annexin I but not DEX on constitutive PLA2 activity suggests a glucocorticoid-independent role for annexin I in autoregulation of arachidonic acid production. The lack of effect of annexin I on cytokine-induced PGE2 production suggests PGE2-independent mechanisms for the anti-inflammatory effects of annexin I in vivo.  相似文献   

6.
We have designed a series of recombinant CAT genes to study IL-1 signal transduction in murine fibroblast NIH 3T3 cells. We demonstrate that the HSV thymidine kinase (tk) promoter does not respond to IL-1, but that IL-1 induction of this promoter is observed after insertion of either NF-kB or AP-1 binding sites upstream of the HSV tk cap-site. We have studied the effects of indomethacin, dexamethasone and aurothioglucose (which have been used in the treatment of patients affected by rheumatoid arthritis) in the IL-1 inducible CAT assay. We show that aurothioglucose or dexamethasone is able to inhibit IL-1 induced CAT activity whereas a non-steroidal anti-inflammatory drug (indomethacin) is inactive. Order of addition experiments indicate that aurothiglucose, which has disease-modifying activity in treated patients, ats as an IL-1 functional antagonist in this system.  相似文献   

7.
We have designed a series of recombinant CAT genes to study IL-1 signal transduction in murine fibroblast NIH 3T3 cells. We demonstrate that the HSV thymidine kinase (tk) promoter does not respond to IL-1, but that IL-1 induction of this promoter is observed after insertion of either NF-kB or AP-1 binding sites upstream of the HSV tk cap-site. We have studied the effects of indomethacin, dexamethasone and aurothioglucose (which have been used in the treatment of patients affected by rheumatoid arthritis) in the IL-1 inducible CAT assay. We show that aurothioglucose or dexamethasone is able to inhibit IL-1 induced CAT activity whereas a non-steroidal anti-inflammatory drug (indomethacin) is inactive. Order of addition experiments indicate that aurothioglucose, which has disease-modifying activity in treated patients, acts as an IL-1 functional antagonist in this system.  相似文献   

8.
We examined the effect of phospholipase A2 (PLA2; Naja naja) challenge on pulmonary hemodynamics, airway constriction, and fluid filtration in isolated Ringer-perfused guinea pig lungs. Intratracheal PLA2 (10-100 U) produced dose-dependent increases in pulmonary arterial pressure, intratracheal pressure, and lung weight, although intravenous PLA2 administration had no effect on monitored variables. Morphological features indicative of airway constriction and pulmonary edema were observed by light microscopy. PLA2-induced increases in intratracheal pressure and/or lung weight were attenuated to varying degrees by pretreatment with indomethacin (1 microM, a cyclooxygenase inhibitor), ICI-198,615 (1 microM, a leukotriene D4 receptor antagonist), and WEB 2086 (1 microM, a platelet-activating factor antagonist). PLA2-induced increases in pulmonary arterial pressure and intratracheal pressure were also reduced in lungs removed from animals pretreated with dexamethasone (50 mg/kg ip for 2 days; a steroidal antiinflammatory agent). Pyrilamine (1 microM, a histamine1-receptor antagonist) and Takeda AA861 (1 microM, a delta 5-lipoxygenase inhibitor) did not produce significant inhibitory effects on PLA2-induced pathophysiological changes. Intratracheal instillation of high-dose platelet-activating factor (50 micrograms) or lysophosphatidylcholine (100 micrograms) produced gradual increases in intratracheal pressure and lung weight, but these changes were not as large as those induced by PLA2. Thus these studies suggest that resident cell populations associated with airways may play an important role in PLA2-induced pathophysiological changes in the perfused guinea pig lung. These PLA2-induced effects are most likely partially mediated by generation of eicosanoids and platelet-activating factor.  相似文献   

9.
Ascorbate induces a 10- to 25-fold rise in platelet guanosine 3'5'-cyclic monophosphate (cGMP) and this action is prevented or reversed by the introduction of aspirin, indomethacin, ro 5,8,11,14-eicosatetraenoic acid (TYA). The reversal was 70-90% complete at 30 s, the earliest time point that was examined. As the effect of ascorbate on cGMP was not diminished by anaerobic conditions, which inhibited the oxidation of exogenous arachidonate by more than 95%, metabolic inhibition of cyclo-oxygenase activity did not duplicate the effect of the non-steroidal anti-inflammatory agents. Ascorbate did not act by the activation of phospholipase A2 in that the ascorbate-induced evevation of cGMP was not accompanied by increased oxygen consumption or the release of [14C]-arachidonate from prelabeled platelets. Thus, despite the finding that non-steroidal anti-inflammatory agents prevent and reverse the ascorbate-mediated elevation of cGMP, it was not possible to relate their respective antagonist and agonist actions to the oxidation of arachidonate.  相似文献   

10.
The concurrent effect of indomethacin or aspirin on prostaglandins (PGs) biosynthesis and on cellular fatty acid efflux were compared. Studies with rabbit kidney medulla slices and with isolated perfused rabbit kidney showed a marked difference between the two non-steroidal anti-inflammatory drugs, with regard to their effects on fatty acid efflux from kidney tissue. While aspirin effect was limited to inhibition of PGs biosynthesis, indomethacin also reduced the release of free fatty acids. In medullary slices, indomethacin inhibited the Ca2+ stimulation of phospholipase A2 activity and the resulting release of arachidonic and linoleic fatty acids. In the isolated perfused rabbit kidney, indomethacin inhibited the basal efflux of all fatty acids as well as the angiotensin II — induced selective release of arachidonate. Indomethacin also blunted the angiotensin II — induced temporal changes in the efflux of all other fatty acids. Neither indomethacin nor aspirin affected significantly the uptake and incorporation of exogenous (14C)-arachidonic acid into kidney total lipid fraction.Our tentative conclusion is that indomethacin inhibits basal as well as Ca2+ or hormone stimulated activity of kidney lipolytic enzymes. This action of indomethacin reduces the pool size of free arachidonate available for conversion to oxygenated products (both prostaglandin and non-prostaglandin types). The non-steroidal anti-inflammatory drugs can therefore be divided into two groups: a) aspirin-type compounds which inhibit PGs formation only by interacting with the prostaglandin endoperoxide synthetase and b) indomethacin-type compounds which inhibit PG generation by both reduction in the amount of available arachidonate and direct interaction with the enzyme.  相似文献   

11.
Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.  相似文献   

12.
Das A  Banik NL  Ray SK 《Neurochemical research》2007,32(11):1849-1856
Glioblastoma patients receive anti-inflammatory agent for alleviation of vasogenic edema and pain prior to surgery, radiotherapy, and chemotherapy. Oxidative stress is an important mechanism of action of some chemotherapeutic agents in the treatment of glioblastoma. So, we examined the modulatory effects of methylprednisolone (MP, a steroidal anti-inflammatory agent) and indomethacin (IM, a non-steroidal anti-inflammatory agent) on apoptosis in rat C6 glioblastoma cells following oxidative stress with hydrogen peroxide (H2O2). Exposure of C6 cells to 1 mM H2O2 for 24 h caused significant amounts of morphological and biochemical features of apoptosis. Expressions of Bax and Bcl-2 at mRNA and protein levels were altered resulting in an increase in Bax : Bcl-2 ratio in apoptotic cells, which also exhibited overexpression of 80 kDa calpain and an increase in calpain-cleaved 145 kDa α-spectrin breakdown product. Immunofluorescent and propidium iodide labeling detected caspase-3-p20 fragment in apoptotic cells, indicating activation of caspase-3 as well. Treatment of cells with 1 μM MP or 10 μM IM alone did not induce apoptosis. Pretreatment (1 h) with either 1 μM MP or 10 μM IM significantly inhibited H2O2 mediated apoptosis in C6 cells. Thus, pretreatment of glioblastoma with an anti-inflammatory agent, either steroidal or non-steroidal, may compromise the action of a chemotherapeutic agent that mediates therapeutic action via oxidative stress.  相似文献   

13.
An NAD(P)-dependent 3 alpha-hydroxysteroid dehydrogenase (EC 1.1.1.50) was purified to homogeneity from rat liver cytosol, where it is responsible for most if not all of the capacity for the oxidation of androsterone, 1-acenaphthenol and benzenedihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene). The dehydrogenase has many properties (substrate specificity, pI, Mr, amino acid composition) in common with the dihydrodiol dehydrogenase (EC 1.3.1.20) purified from the same source [Vogel, Bentley, Platt & Oesch (1980) J. Biol. Chem. 255, 9621-9625]. Since 3 alpha-hydroxysteroids are by far the most efficient substrates, the enzyme is more appropriately designated a 3 alpha-hydroxysteroid dehydrogenase. It also promotes the NAD(P)H-dependent reductions of quinones (e.g. 9,10-phenanthrenequinone, 1,4-benzoquinone), aromatic aldehydes (4-nitrobenzaldehyde) and aromatic ketones (4-nitroacetophenone). The dehydrogenase is not inhibited by dicoumarol, disulfiram, hexobarbital or pyrazole. The mechanism of the powerful inhibition of this enzyme by both non-steroidal and steroidal anti-inflammatory drugs [Penning & Talalay (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4504-4508] was examined with several substrates. Most non-steroidal anti-inflammatory drugs are competitive inhibitors (e.g. Ki for indomethacin, 0.20 microM for 9,10-phenanthrenequinone reduction at pH 6.0, and 0.835 microM for androsterone oxidation at pH 7.0), except for salicylates, which act non-competitively (e.g. Ki for aspirin, 650 microM for androsterone oxidation). The inhibitory potency of these agents falls sharply as the pH is increased from 6 to 9. Most anti-inflammatory steroids are likewise competitive inhibitors, except for the most potent (betamethasone and dexamethasone), which act non-competitively. The enzyme is inhibited competitively by arachidonic acid and various prostaglandins.  相似文献   

14.
Inhibition of Proteolysis by a Cyclooxygenase Inhibitor,Indomethacin   总被引:2,自引:0,他引:2  
The effect of indomethacin, a non-steroidal anti-inflammatory drug upon purified calpain has been studied. Also, its effects upon Ca2+-mediated degradation of cytoskeletal proteins (neurofilament) in spinal cord homogenate has been investigated. A dose-dependent inhibition of purified calpain activity was observed. A 50% inhibition of 14C-caseinolytic activity was obtained with less than 1.1 mM of indomethacin while the activity was completely inhibited at 3.3 mM concentration. The inhibitory effect of ketorlac, another non-steroidal anti-inflammatory drug, upon calpain was weaker than that of indomethacin. The degradation of myelin basic protein (MBP) by cathepsin B, a lysosomal cysteine protease, was significantly inhibited by indomethacin. It also inhibited the Ca2+-mediated degradation of neurofilament protein (NFP) in spinal cord homogenate. The extent of NFP degradation was analyzed by SDS-PAGE and the inhibition shown by indomethacin was weaker than that observed with leupeptin and the calpain inhibitor E64-d. The inhibitory effect of indomethacin on the activity of multicatalytic proteinase complex was negligible. These results suggest that indomethacin, a non-steroidal anti-inflammatory drug and cyclooxygenase inhibitor also inhibits proteinases, including cathepsin B and calpain.  相似文献   

15.
PGF2α, but not PGE2, induces a slight pedal edema when given alone. Both compounds were equipotent in the carrageenin-induced rat paw edema. Locally administered, PGE2 and PGF2α did not exacerbate, but rather inhibited inflammations induced by various agents such as 1% carrageenin or 1% egg white. The administration of PGE2 directly into cotton pellets or into the rat's hind paw in combination with M. butyricum significantly inhibited, respectively, granuloma formation and the polyarthritis. Subcutaneously, both prostaglandins inhibited the adjuvant induced polyarthritis. Neither PGE2 nor PGF2α inhibited the anti-edema properties of non-steroidal or steroidal anti-inflammatory standards. A greater anti-edema activity was observed with the combination treatment than with the anti-inflammatory standards alone. We were unable to decrease the anti-inflammatory activity of the steroidal and non-steroidal standards or increase the inflammatory potential of the phlogistic agents.  相似文献   

16.
Release of arachidonic acid from rat liver cells is stimulated after a 6-hour incubation with 9-cis retinoic acid, all trans retinoic acid, the selective peroxisome proliferator-activated receptor-gamma synthetic thiazolidinedione, ciglitazone, the cyclopentenones, 15-deoxy-Delta(12,14) PGJ2 and PGA1 and the non-steroidal anti-inflammatory drugs, celecoxib and indomethacin. The rates of the release stimulated by 15-deoxy-Delta(12,14) PGJ2 differ from those observed with celecoxib. Arachidonic acid release by9-cis retinoic acid in the presence of either ciglitazone or trans retinoic acid is synergistic. It is additive in the presence of celecoxib. Cycloheximide and actinomycin inhibit the release of arachidonic acid stimulated by 15-deoxy-Delta(12,14) PGJ2 but not by celecoxib. The findings indicate that agonists of the peroxisome proliferator-activated receptor-gamma and retinoic acid receptors stimulate the release of arachidonic acid. The mechanisms involved may differ in the cases of 15-deoxy-Delta(12,14) PGJ2 and celecoxib.  相似文献   

17.
Functional disturbances in brain following injury   总被引:6,自引:0,他引:6  
It was shown previously that local cerebral glucose utilization is less than 50% of normal in all cortical areas of rat brain 3 days following a focal freeze-lesion and that this effect of trauma is significantly diminished by dexamethasone (0.25 mg/Kg/day), and by indomethacin (7.5 mg/Kg single dose). To elucidate the mechanism of action of steroids and non-steroidal antiinflammatory drugs in traumatized brain, the effects of dexamethasone and indomethacin on arachidonic acid release, malondialdehyde production and prostaglandin synthesis in the lesion area were investigated. Five seconds after a freezing lesion arachidonic acid was significantly increased in the lesion area of untreated animals. Neither dexamethasone nor indomethacin had any effect on this release. The thiobarbituric acid reaction, as an estimate of malondialdehyde and non-enzymatic free radical lipoperoxide formation from unsaturated free fatty acids showed no change in the control and lesion areas of untreated and both dexamethasone and indomethacin treated groups. There was a marked increase in PGF2 alpha, PGE2, PGD2 in the lesion area of untreated animals. Indomethacin prevented the formation of prostaglandins by more than 90% while dexamethasone had no effect. These results suggest that some components of the arachidonic acid metabolism must be involved in functional disturbances resulting from trauma while steroid action is mediated in injured brain independently from the prostaglandin cascade.  相似文献   

18.
The antigen stimulation of RBL-2H3 cells induced interleukin 13 (IL-13) production, which was inhibited by the steroidal anti-inflammatory drug dexamethasone and by the c-Jun N-terminal kinase (JNK) inhibitor SP600125. Dexamethasone did not inhibit the antigen-induced phosphorylation of JNK but inhibited that of c-Jun. In a cell-free system, the phosphorylation of glutathione S-transferase-fused c-Jun by recombinant JNK was not inhibited by dexamethasone but was inhibited by the addition of recombinant glucocorticoid receptor (GR). These findings suggest that the inhibition of antigen-induced IL-13 production by dexamethasone is due to the GR-mediated inhibition of c-Jun phosphorylation induced by JNK.  相似文献   

19.
Astrocyte cultures prelabelled with either [3H]inositol or 45Ca2+ were exposed to ATP and its hydrolysis products. ATP and ADP, but not AMP and adenosine, produced increases in the accumulation of intracellular 3H-labelled inositol phosphates (IP), efflux of 45Ca2+, and release of thromboxane A2 (TXA2). Whereas ATP-stimulated 3H-IP accumulation was unaffected, its ability to promote TXA2 release was markedly reduced by mepacrine, an inhibitor of phospholipase A2 (PLA2). ATP-evoked 3H-IP production was also spared following treatment with the cyclooxygenase inhibitor, indomethacin. We conclude that ATP-induced phosphoinositide (PPI) breakdown and 45 Ca2+ mobilisation occurred in parallel with, if not preceded, the release of TXA2. Following depletion of intracellular Ca2+ with a brief preexposure to ATP in the absence of extracellular Ca2+, the release of TXA2 in response to a subsequent ATP challenge was greatly reduced when compared with control. These results suggest that mobilisation of cytosolic Ca2+ may be the stimulus for PLA2 activation and, thus, TXA2 release. Stimulation of alpha 1-adrenoceptors also caused PPI breakdown and 45 Ca2+ efflux but not TXA2 release. The effects of ATP and noradrenaline (NA) on 3H-IP accumulation were additive, but their combined ability to increase 45Ca2+ efflux was not. Interestingly, in the presence of NA, ATP-stimulated TXA2 release was reduced. Our data provide evidence that functional P2-purinergic receptors are present on astrocytes and that ATP is the first physiologically relevant stimulus found to initiate prostanoid release from these cells.  相似文献   

20.
The release of arachidonic acid by luteinizing hormone (LH) and the effects of inhibiting phospholipase A2 (PLA2) in vivo and in vitro on LH stimulated steroidogenesis in rat testis Leydig cells has been investigated. It was found that arachidonic acid is rapidly incorporated into phospholipids and is released within 1 min after addition of LH. The effects of treating adult rats with dexamethasone and human chorionic gonadotropin (hCG) in vivo on steroidogenesis and prostaglandin synthesis in Leydig cells isolated 6 h later were determined. It was found that hCG caused a marked increase in prostaglandin F2 alpha formation which was inhibited by treatment with dexamethasone. LH-stimulated testosterone production was inhibited in the hCG treated rats and dexamethasone caused a further decrease. Treatment with dexamethasone alone also caused a decrease in the response to LH. HCG, but not dexamethasone, had similar inhibitory effects on LH-stimulated cyclic AMP production. Similarly, the PLA2 inhibitors quinacrine, dexamethasone and corticosterone, added to the Leydig cells in vitro, inhibited LH-stimulated testosterone production but not cyclic AMP production. 11-Dehydrocorticosterone also inhibited LH-stimulated testosterone production, but higher concentrations were required to give 50% inhibition compared to corticosterone (50 and 25 microM, respectively). Ring A-reduced metabolites of corticosterone and progesterone were also found to inhibit LH-stimulated steroidogenesis. The results obtained in this and previous studies are consistent with the activation of PLA2, (either directly by LH and/or via cyclic AMP), which results in the release of arachidonic acid and the formation of leukotrienes, which stimulate steroidogenesis in the Leydig cell. This study also indicates that corticosteroids and their metabolites may exert inhibitory effects at other sites in the steroidogenic pathways, in addition to PLA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号