首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction of adenylosuccinate synthetase with F-actin   总被引:1,自引:0,他引:1  
Both crude and purified preparations of adenylosuccinate synthetase from muscle were found to combine with, and dissociate from, muscle debris precipitated from a homogenate of the muscle with water. The binding and dissociation depended on ionic strength. Further study showed that the muscle enzyme was adsorbed to F-actin, but not to G-actin or myosin. The muscle-type enzyme from the liver also associated with F-actin, but the liver-type enzyme from the liver did not. In the absence of KCl the molar ratio of adenylosuccinate synthetase from skeletal muscle to actin monomer in F-actin in the complex formed was 1 to 4. From a Scatchard plot the dissociation constant was calculated to be 0.72 micrometer. The binding was maximal at pH 5.5-7 in 30 mM potassium phosphate buffer. The complex was completely dissociated in the presence of 0.21 M KCl. The physiological significance of this binding is discussed on the basis of these findings.  相似文献   

2.
Koscak Maruyama 《BBA》1973,305(3):679-683
When G-actin was polymerized in the presence of β-actinin, the resultant F-actin became unstable on incubation in 0.1 M KCl at 25°C. The F-actin filaments changed into globular aggregates of 20–30 nm in diameter. ATP protected the denaturation of β-actinin-modified F-actin. Thus the instability of the isolated I filaments is explained by the influence of β-actinin.  相似文献   

3.
The binding of pig skeletal muscle lactate dehydrogenase by F-actin has been studied using the sedimentation method in 10 mM Tris-acetate buffer, pH 6.0 at 20 degrees C. Adsorption capacity of F-actin is equal to (1 +/- 0.1) . 10(-5) moles of lactate dehydrogenase per 1 g of actin. NADH decreases the affinity of F-actin with respect to lactate dehydrogenase. The binding of lactate dehydrogenase by F-actin in diminishing the rate of enzymatic reduction of alpha-ketoglutarate. The microscopic dissociation constant for the complex of the enzyme with F-actin which is estimated from the dependence of the enzymatic reaction rate of F-actin concentration at saturating NADH concentrations is equal (3.0 +2- 0.5) . 10(-7) M. It has been shown that the bound enzyme is characterized by the greater value of Km and the lower value of Vmax in comparison to the free enzyme.  相似文献   

4.
By the use of sedimentation method the interaction of F-protein (phosphofructokinase) with F-actin has been studied in 0.1 M KCl, 10 mM K-phosphate buffer, pH 6.5. The calculated value of the constant of F-protein binding to F-actin is (7.3 +/- 1.0) X 10(5) M-1. The number of the F-protein binding sites calculated per chain weight of 80,000 is 0.43. The binding of F-protein to F-actin was found to be affected by pH-value.  相似文献   

5.
Cofilin/ADF affects strongly the structure of actin filaments and especially the intermolecular contacts of the DNase I binding loop (D-loop) in subdomain 2. In G-actin, the D-loop is cleaved by subtilisin between Met47 and Gly48, while in F-actin this cleavage is inhibited. Here, we report that yeast cofilin, which is resistant to both subtilisin and trypsin, accelerates greatly the rate of subtilisin cleavage of this loop in F-actin at pH 6.8 and at pH 8.0. Similarly, cofilin accelerates strongly the tryptic cleavage in F-actin of loop 60-69 in subdomain 2, at Arg62 and Lys68. The acceleration of the loops' proteolysis cannot be attributed to an increased treadmilling of F-actin for the following reasons: (i) the rate of subtilisin cleavage is independent of pH between pH 6.8 and 8.0, unlike F-actin depolymerization, which is pH-dependent; (ii) at high concentrations of protease the cleavage rate of F-actin in the presence of cofilin is faster than the rate of monomer dissociation from the pointed end of TRC-labeled F-actin, which limits the rate of treadmilling; and (iii) cofilin also accelerates the rate of subtilisin cleavage of F-actin in which the treadmilling is blocked by interprotomer cross-linking of the D-loop to the C terminus on an adjacent protomer. This suggests a substantial flexibility of the D-loop in the cross-linked F-actin. The increased cleavage rates of the D-loop and loop 60-69 reveal extensive exposure of subdomain 2 in F-actin to proteolytic enzymes by cofilin.  相似文献   

6.
The binding of rabbit muscle glycogen phosphorylase b to F-actin has been studied by sedimentation in analytical centrifuge in 10 mM Tris-acetate buffer pH 6.8 at 20 degrees C. The adsorption capacity of F-actin is equal to (7.8 +/- 0.9) X 10(-7) mole of glycogen phosphorylase b per 1 g of F-actin; the microscopic dissociation constant for the glycogen phosphorylase-F-actin complex is (5.4 +/- 0.5) X 10(-7) M. It was found that the allosteric activator, AMP, facilitates the adsorption of glycogen phosphorylase b on F-actin, whereas the substrate, Pi, and the inhibitor, ATP, cause an opposite effect.  相似文献   

7.
The bindings of S-1 and the two heads of HMM with pyrene-labeled F-actin were studied using the change in light-scattering intensity or that in the fluorescence intensity of the pyrenyl group. At low ionic strength (50 mM KCl), both S-1 and HMM became bound tightly with F-actin (Kd less than 0.1 microM) and both heads of HMM became bound to F-actin. The affinities of S-1 and HMM for F-actin decreased with increasing KCl concentration. In 1 M KCl, the Kd values of S-1 and HMM for F-actin were 11 and 0.58 microM, respectively. Thus, HMM was bound to F-actin 19 times more tightly than S-1. We compared the extent of binding of HMM to F-actin measured by a centrifugation method with that measured by the fluorescence change of pyrenyl-group, and found that even in 1 M KCl, HMM became bound to F-actin with a two-headed attachment. We measured the kinetics of binding and dissociation of acto-S-1 and acto-HMM from the time course of the change in light-scattering intensity after mixing S-1 or HMM with F-actin at 1 M KCl and that after mixing 1 M KCl with acto-S-1 or acto-HMM formed at low ionic strength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The temperature- and pH-induced transitions in F-protein (phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11] have been studied by means of microcalorimetry and fluorescence and CD spectroscopy. An increase in pH from approx. 6.0 to approx. 8.0 causes a change in the protein state which seems to correspond to a shift of the dimer-tetramer equilibrium in favour of the tetramers. In the absence of phosphate, stability of the protein to temperature- and urea-induced denaturation at pH 6.0 is higher than that at pH 8.0. An addition of 150 mM phosphate results in a pronounced increase in the protein's stability in such a way that the protein becomes more stable at pH 8.0 than at pH 6.0. The shift of the denaturational heat capacity peak induced by the phosphate binding exceeds 25 degrees C at pH 8.0 and 9 degrees C at pH 6.0.  相似文献   

9.
Cardiac myosin-binding protein C (cMyBP-C), a major accessory protein of cardiac thick filaments, is thought to play a key role in the regulation of myocardial contraction. Although current models for the function of the protein focus on its binding to myosin S2, other evidence suggests that it may also bind to F-actin. We have previously shown that the N-terminal fragment C0-C2 of cardiac myosin-binding protein-C (cMyBP-C) bundles actin, providing evidence for interaction of cMyBP-C and actin. In this paper we directly examined the interaction between C0-C2 and F-actin at physiological ionic strength and pH by negative staining and electron microscopy. We incubated C0-C2 (5-30μM, in a buffer containing in mM: 180 KCl, 1 MgCl(2), 1 EDTA, 1 DTT, 20 imidazole, at pH 7.4) with F-actin (5μM) for 30min and examined negatively-stained samples of the solution by electron microscopy (EM). Examination of EM images revealed that C0-C2 bound to F-actin to form long helically-ordered complexes. Fourier transforms indicated that C0-C2 binds with the helical periodicity of actin with strong 1st and 6th layer lines. The results provide direct evidence that the N-terminus of cMyBP-C can bind to F-actin in a periodic complex. This interaction of cMyBP-C with F-actin supports the possibility that binding of cMyBP-C to F-actin may play a role in the regulation of cardiac contraction.  相似文献   

10.
pH-dependent denaturation of thrombin-activated porcine factor VIII   总被引:6,自引:0,他引:6  
Thrombin-activated porcine factor VIII (fVIIIaIIa) is a stable, active, 160-kDa heterotrimer at concentrations exceeding 2 x 10(-7) M in 0.7 M NaCl, 0.01 M histidine Cl, 5 mM CaCl2, pH 6.0, at 4 degrees C or 20 degrees C. Two of the subunits, fVIIIA1 and fVIIIA2, are derived from the heavy chain of the plasma-derived, heterodimeric fVIII precursor. The third subunit, fVIIIA3-C1-C2, is derived from the fVIII light chain. We now find that fVIIIaIIa undergoes a sharp decline in coagulant activity between pH 7 and 8. At pH 7.5, the activity of fVIIIaIIa at 3 x 10(-7) M decays within a few hours to a stable level that is approximately 70% of the value at pH 6.0, whereas at pH 8.0, greater than 99% of the activity is lost. The activity cannot be restored by readjusting the pH to 6.0. The loss of activity at pH 8.0 coincides with dissociation of the fVIIIA2 subunit since an inactive fVIIIA1/A3-C1-C2 heterodimer can be isolated by Mono S high performance liquid chromatography. After prolonged incubation at pH 8.0, the fVIIIA1 subunit also dissociates. The free fVIIIA2 fragment appears to be poorly soluble which may explain the irreversible loss of activity. Analytical velocity sedimentation of the pH-inactivated fVIIIaIIa preparation also is consistent with dissociation and precipitation of the fVIIIA2 fragment. We propose that denaturation of fVIIIaIIa by pH-dependent subunit dissociation may provide a major mechanism of inactivation of fVIIIaIIa under physiologic conditions.  相似文献   

11.
The influence of ATP and KCl on the quaternary structure and the enzymatic activity of D-glyceraldehyde-3-phosphate dehydrogenase from yeast(Y-GAPDH) has been studied by ultracentrifugation, gel chromatography and standard optical tests. In 0.1 M imidazole buffer pH 7.0, at low temperature (0°C) both complete deactivation and dissociation to dimers occur in the presence of 2 mM ATP and 0.1 M 2-mercaptoethanol. In 0.067 M phosphate buffer pH 7.0, containing 2 mM ATP and 1 mM dithiothreitol, only slight deactivation paralleled by minor changes of the native quaternary structure is observed. In this same buffer, increasing temperature leads to stabilization of both the tetrameric state and the catalytic activity of the enzyme. Deactivation and dissociation in the presence of 0.15 M KCl (in 0.2 M glycine buffer 9.1 ≥ pH ≥ 8.0) is a function of pH rather than electrolyte concentration; at neutral pH the enzyme is stabilized in its native state. Contrary to earlier assumptions in the literature, ATP and KCl under the above experimental conditions do not appear to play an important role in the in vivo regulation of Y-GAPDH.  相似文献   

12.
Alanine-neochymotrypsinogen was prepared by incubating 20 parts bovine pancreas chymotrypsinogen A with one part alpha-chymotrypsin in a solution containing 1 M (NH4)2SO4, 0.1 M sodium acetate, 0.05 M Tris buffer (pH 8.0) and 0.5 mg/ml soybean trypsin inhibitor. Optimal yields of NH2-terminal alanine were obtained after 60 h incubation at 4 degrees C. Ala-neochymotrypsinogen was isolated from the reaction mixture by affinity chromatography and ion-exchange chromatography on carboxymethyl-cellulose. As expected, the purified preparation was enzymatically inactive and, compared to chymotrypsinogen, had one additional NH2-terminal group identified as alanine. Ala-neochymotrypsinogen was activated by incubating with trypsin at a zymogen : trypsin ratio of 30 : 1 in 0.1 M phosphate buffer, pH 7.6 at 4 degrees C for 1 h. The fully active, stable species was identified as alpha-chymotrypsin.  相似文献   

13.
The Malachite Green method for determination of inorganic phosphate (Pi) (Itaya K. & Ui, M. (1966) Clin. Chim. Acta 14, 361-366) was modified to measure Pi in the range of 0.2-15 nmol per ml of ATPase reaction mixture. An ATPase reaction mixture is quenched with an equal volume of 0.6 M PCA; the supernatant after centrifugation is mixed with an equal volume of the Malachite Green/molybdate reagent containing 2 g of sodium molybdate, 0.3 g of Malachite Green and 0.5 g of Triton X-100 or Sterox SE in 1 liter of 0.7 M HCl, and the absorbance at 650 nm is then measured after a 35-40 min incubation at 25 degrees C. Owing to the high sensitivity and simplicity of the modified method, the slow time course of myosin ATP hydrolysis in the presence of Mg2+ and the size of initial phosphate burst can be determined accurately using relatively low concentrations of native myosin and its subfragment-1. The phosphate burst size varied with changes in pH, ionic strength, and temperature. A typical value was 0.8-0.9 mol per site in 0.1 M KCl, 10 mM MgCl2, pH 8.0 at 25 degrees C for fresh enzyme preparations.  相似文献   

14.
Acid phosphatase of Staphylococcus aureus PS55 was eluted from the surface of these cells with 1.0 m KCl at pH 8.5 by gentle agitation at 25 C and was purified 44-fold (51% recovery) by two cycles of dialysis and gel filtration. The eluted enzyme which had a 280/260 (nm) absorbancy ratio of 0.71 required at least 0.5 m salt solution for solubilization; however, most of the purified product which had a 280/260 (nm) absorbancy ratio of 1.72 was soluble in dilute buffer solution [0.01 m tris(hydroxymethyl)aminomethane chloride, pH 8.5]. Purified acid phosphatase appeared homogeneous according to the criteria of gel filtration, starch-block electrophoresis, and analytical ultracentrifugation. In a starch block, migration was toward the cathode at pH 8.0. Maximal activity occurred at pH 5.2 to 5.3 and salt concentration had little effect on phosphatase activity up to 1.0 m KCl or NaCl. Progressive loss of enzymatic acitivity occurred at higher salt concentrations. Molecular weight of purified acid phosphatase was estimated to be 58,000.  相似文献   

15.
S S Margossian  S Lowey 《Biochemistry》1978,17(25):5431-5439
The effect of ionic strength, temperature, and divalent cations on the association of myosin with actin was determined in the ultracentrifuge using scanning absorption optics. The association constant (Ka) for the binding of heavy meromyosin (HmM) to F-actin was 1 X 10(7) M-1 at 20 degrees C, in 0.10 M KCl, 0.01 M imidazole (pH 7.0), 5 MM potassium phosphate, 1 mM MgCl2, and 0.3 mM ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid. Ka was the same for HMM prepared by trypsin or chymotrypsin. The affinity of subfragment 1 (S1) for actin under the same ionic conditions was 3 X 10(6) M-1. Varying the preparative procedure for S1 had little effect on Ka. The small difference in binding energy between HMM and S1 suggests that either only one head can bind strongly to actin at a time or that free energy is lost during the sterically unfavorable attachment of the two heads to actin.  相似文献   

16.
While actin polymerization and depolymerization are both essential for cell movement, few studies have focused on actin depolymerization. In vivo, depolymerization can occur exceedingly rapidly and in a spatially defined manner: the F-actin in the lamellipodia depolymerizes in 30 s after chemoattractant removal (Cassimeris, L., H. McNeill, and S. H. Zigmond. 1990. J. Cell Biol. 110:1067-1075). To begin to understand the regulation of F-actin depolymerization, we have examined F-actin depolymerization in lysates of polymorphonuclear leukocytes (PMNs). Surprisingly, much of the cell F-actin, measured with a TRITC-phalloidin-binding assay, was stable after lysis in a physiological salt buffer (0.15 M KCl): approximately 50% of the F-actin did not depolymerize even after 18 h. This stable F-actin included lamellar F-actin which could still be visualized one hour after lysis by staining with TRITC-phalloidin and by EM. We investigated the basis for this stability. In lysates with cell concentrations greater than 10(7) cells/ml, sufficient globular actin (G-actin) was present to result in a net increase in F-actin. However, the F-actin stability was not solely because of the presence of free G-actin since addition of DNase I to the lysate did not increase the F-actin loss. Nor did it appear to be because of barbed end capping factors since cell lysates provided sites for barbed end polymerization of exogenous added actin. The stable F-actin existed in a macromolecular complex that pelleted at low gravitational forces. Increasing the salt concentration of the lysis buffer decreased the amount of F-actin that pelleted at low gravitational forces and increased the amount of F-actin that depolymerized. Various actin-binding and cross-linking proteins such as tropomyosin, alpha-actinin, and actin-binding protein pelleted with the stable F-actin. In addition, we found that alpha-actinin, a filament cross-linking protein, inhibited the rate of pyrenyl F-actin depolymerization. These results suggested that actin cross-linking proteins may contribute to the stability of cellular actin after lysis. The activity of crosslinkers may be regulated in vivo to allow rapid turnover of lamellipodia F-actin.  相似文献   

17.
Mycoplasma pneumoniae was grown on Formvar- and carbon-coated electron microscope grids and treated with the nonionic detergent Triton X-100 to gently remove the membrane and cytoplasm. The detergent mixture was composed of 0.5% Triton X-100 in SSR-2 broth base. After this treatment, the grids were rinsed in a mixture of 0.1 M KCl, 5 mM MgCl2, and 6 mM potassium phosphate buffer (pH 7.05) and negatively stained with uranyl acetate. The Triton X-100-resistant remains of M. pneumoniae after gentle removal of the membrane and cytoplasm consisted of fibrous structures oriented similarly to the undisrupted cells. The thin fibers displayed a negative staining quality and diameter analogous to that of rabbit muscle F-actin. The fibrous moieties ended in rodlike condensations which appeared striated in negatively stained and shadowed preparations. These striations were regular, and the majority of rod structures had lengths of 220 to 300 nm and widths of 50 to 80 nm. Specific antibody to rabbit muscle actin, produced in guinea pigs, was used in indirect immunofluorescence of the M. pneumoniae colonies. Fluorescence was detected, with concentrations at the colony center and at the tips of filamentous cells.  相似文献   

18.
Proline accumulation in coleoptiles of wheat seedlings or in excised coleoptile segments incubated under shaking for a 24 h period was studied. There was no increase of proline content of coleoptiles after incubation of the seedlings in 5 mM citric acid (a relatively strong and slowly penetrating organic acid) in a pH range from 4.5 to 7.0 and only a slight increase of proline content after incubation in phosphate buffer at pH 7.0 to 7.5 duo to the higher osmotic concentration of phosphate buffer in this pH range. Quite different results were obtained with seedlings incubated in 10 mM acetic acid, a weak and easily penetrating organic acid. With increasing proton concentrations, proline accumulation increased. Application of 400 mM mannitol or higher concentrations of IAA (more than 10−5M) additionally increased proline accumulation in the presence of 10 mM acetic acid in the pH range from 6.0 to 7.5 in which acetic acid alone was loss effective. It is suggested that a decrease of cytosolic pH causes stress—induced proline accumulation.  相似文献   

19.
Light-scattering and related studies on the polymerization behavior of the protein from the PM2 strain of TMV show that in phosphate buffer of ionic strength 0.1, the maximum extent of temperature-mediated polymerization occurs at pH values lower than in the case of TMV protein. The pH range of temperature-induced polymerization is from 5.0 to 6.0, contrasted with 5.0 to 7.5 for TMV protein. Velocity sedimentation studies show that PM2 protein at room temperature in phosphate buffer (I = 0.1) has sedimentation coefficients of 174 S, 104 S, and 4.3 S at pH values of 4.89, 5.53, and 7.5. Electron microscope studies show that at room temperature in phosphate buffer of 0.1 ionic strength at pH 5.53, PM2 protein has structures resembling essentially that of stacked double discs with an occasional helical structure. Similar studies of PM2 protein in 0.1 M ammonium acetate buffer at pH 5.2 show single, double, and double-double helices.  相似文献   

20.
Solutions of each of three different globular proteins (cytochrome c, chromophorically labeled serum albumin, and chromophorically labeled aldolase), mixed with another unlabeled globular protein or with fibrous actin, were prepared in pH 8.0 Tris-HCl buffer containing 0.15 M NaCl. Each solution was centrifuged at low speed, at 5 degrees C, until unassociated globular protein in solution achieved sedimentation equilibrium. Individual absorbance gradients of both macrosolutes in the mixtures subsequent to centrifugation were obtained via optical scans of the centrifuge tubes at two wavelengths. The gradients of each macrosolute in mixtures of two globular proteins revealed no association of globular proteins under the conditions of these experiments, but perturbation of the gradients of serum albumin, aldolase, and cytochrome c in the presence of F-actin indicated association of all three globular proteins with F-actin. Perturbation of actin gradients in the presence of serum albumin and aldolase suggested partial depolymerization of the F-actin by the globular protein. Analysis of the data with a simple phenomenological model relating free globular protein, bound globular protein, and total actin concentration provided estimates of the respective equilibrium constants for association of serum albumin and aldolase with F-actin, under the conditions of these experiments, of the order of 0.1 microM-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号