首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was made of a possibility of inhibition of biosynthesis of penicillinase in Staph. aureus by acridine derivatives. Acetone preparations of penicillinase were obtained from the cultures of staphylococcus strains 16/160 and 8325 (p11(147) pen 1220) grown in the presence of various subbacterial concentrations of acridine derivatives. The activity of the enzyme was studied in experiment and control by the microiodometric method. Acriflavine and proflavine inhibited the penicillinase biosynthesis from the 4th hour of growth, and rivanol, acrichine, acridines No. 27 and 37--from the 12th hour of the culture growth.  相似文献   

2.
The photodynamically produced mutagenicity and toxicity of 8 acridine compounds were compared in Saccharomyces cerevisiae under resting and growing conditions. Without irradiation none of the acridines induced respiratory-deficient ('petite') colonies, indicative of mitochondrial DNA damage, in resting cells; and only acriflavine and proflavine induced 'petites' in growing cells. Also, without irradiation none of the acridines were significantly toxic or mutagenic for nuclear DNA under resting or growing conditions. However, with irradiation, acriflavine, proflavine, acridine yellow and rivanol became effective 'petite'-inducing mutagens and highly toxic for resting cells, while acriflavine, proflavine, and acridine orange became effective nuclear mutagens for resting cells. Acridine, quinacrine and 9-aminoacridine were not at all biologically effective with irradiation for resting cells. The results presented here indicate that singlet oxygen is generated by a photodynamic mechanism when acriflavine is irradiated, and further, that acridine, quinacrine and 9-aminoacridine are ineffective photosensitizers, because they are incapable of generating singlet oxygen with irradiation.  相似文献   

3.
A modified quantitative nephelometric method was used. It was shown that production of extracellular plasmocoagulase was depressed in the development of acridine-sensitive and acridine-resistant cultures of Staph. aureus in the fluid nutrient medium containing 3,6-diaminoacridines: acriflavine, proflavine, acridine yellow, acridine orange, acridine No. 40 and acridine No. 56; 3,6-diaminoacridines failed to lead to noncompetitive inhibition of staphylococcus plasmocoagulase. A disturbance of the regulation of the enzyme exit into the external environment can serve as the cause of depression of the extracellular plasmocoagulase production by Staph. aureus.  相似文献   

4.
A H Uggla 《Mutation research》1988,201(1):229-239
A comparison has been made between the ability of different acridine compounds to act as sensitizers for visible light (400-700 nm) induced chromosomal aberrations and sister-chromatid exchanges (SCE) in unsynchronized Chinese hamster ovary (CHO) cells. Cells were treated for 20 min with acridines (0.1-5.0 microgram/ml), washed free of excess dye and subsequently exposed to visible light (2 x 40 W/8 W m-2) either in air or in nitrogen for 5-15 min. The 4 acridines tested, proved to be effective sensitizers for the induction of both chromosomal aberrations and SCE by visible light. The most pronounced effect was observed when the light exposure of the fluorochrome-pretreated cells was performed in air. Hypoxic conditions during light exposure reduced the effect dramatically, especially in the case of induced chromosomal aberrations. The order of efficiency for the induction of both chromosomal aberrations and SCE was acridine orange greater than acridine yellow greater than proflavine greater than 3,6-diamino-10-methylacridine. The results are discussed in terms of S-independent versus S-dependent mechanisms for inducing chromosomal alterations and the potential involvement of oxygen-derived free radicals in this process.  相似文献   

5.
All acridines used (acriflavine, proflavine, acridine orange and 3-azido-10-methylacridinium chloride) produced killing in yeast cells when activated with visible light. Acriflavine, proflavine and 3-azido-10-methylacridinium chloride, but not acridine orange, produced petite and sectored colonies. Both cell killing and petite induction by light activation of acriflavine resulted apparently from photodynamic action mediated by singlet oxygen (1O2) since the effect were prevented by either sodium azide or anaerobiosis. The biological effects of 3-azido-10-methylacridinium chloride, which was developed as a potential photoaffinity probe for studying the binding and biological effects of acridines, appeared to be due to a photodynamic action analogous to that of acriflavine. Sodium azide or anaerobiosis prevented the light-activated effects of 3-azido-10-methylacridinium chloride despite the fact that the initial chemical breakdown of the azido derivative induced by light was not affected. Cells suspended in D2O demonstrated an enhanced response to 3-azido-10-methylacridinium chloride with irradiation. These results indicate that singlet oxygen mediates the light-activated biological effects of both acriflavine and 3-azido-10-methylacridinium chloride.  相似文献   

6.
Endonuclease I, exonuclease I, and exonuclease II-deoxyribonucleic acid (DNA) polymerase I activities are not vital functions in Escherichia coli, although the latter two enzymes have been indirectly shown to be involved in DNA repair processes. Acridines such as acridine orange and proflavine interfere with repair in vivo, and we find that such compounds inhibit the in vitro activity of exonuclease I and DNA polymerase I but stimulate endonuclease I activity and hydrolysis of p-nitrophenyl thymidine-5′-phosphate by exonuclease II. Another acridine, 10-methylacridinium chloride, binds strongly to DNA but is relatively inert both in vivo and in vitro. These experiments suggest that acridines affect enzyme activity by interacting with the enzyme directly as well as with DNA. Resulting conformational changes in the DNA-dependent enzymes might explain why similar acridines which form similar DNA complexes have such a wide range of physiological effects. Differential sensitivity of exonuclease I and DNA polymerase I to acridine inhibition relative to other DNA-dependent enzymes may contribute to the acridine sensitivity of DNA repair.  相似文献   

7.
G. Lber  G. Achtert 《Biopolymers》1969,8(5):595-608
The binding constants for the complex formation of more than twenty ring nitrogen-and amino-substituted acridine derivatives with calf thymas DNA were measured by a fluorescence method. DNA quenches the fluorescence of the aminoacridine dyes so long as both amino hydrogens are not substituted. These dyes show an enhancement of their fluorescence intensity in the presence of DNA. Typical representatives of both are proflavine and acridine orange derivatives, respectively. A discussion of steric and electronic influences of various substituents attached to the ring nitrogen and amino groups on the binding led to the concept of different conformations for intercalated acridines without amino groups and the aminoacridines. The electrostatic binding site of the former seems to be the positively charged ring nitrogen, while the binding sites in the aminoacridines are so located that the amino groups are directed towards the negatively charged DNA phosphates.  相似文献   

8.
We have used the forward mutation to resistance to 6 azauracil to test the mutagenicity of rivanol (6,9 diamino 2-ethoxy acridine) on Escherichia coli. Rivanol has been used to induce therapeutic abortions in midpregnancy and is considered safe and effective for this purpose. The findings reported here that rivanol, like other acridines, is a mutagen, at least in procaryotes, suggests that such use of rivanol be reconsidered in light of its possible genetic toxicity.  相似文献   

9.
Fluorescence properties (quantum yield, decay curve, lifetime and polarization) of acridine orange and proflavine bound to DNA were examined as a function of nucleotide to dye (P/D) ratio. First, mean fluoiescence lifetimes were determined by the phase-shift measurements. The lifetime and quantum yield of acridine orange increased in a parallel fashion with increasing P/D ratio. There was no parallel relation between the lifetime and quantum yield for proflavine; the lifetime showed a minimum around P/D = 10. Next, fluorescence decay curves were measured by the monophoton counting technique and analyzed with the aid of the method of moments and the Laplace transform method. The results showed that the fluorescence decay of bound acridine orange was exponential above P/D = 10. On the other hand, the decay of bound proflavine was exponential above P/D = 100, but markedly deviated from exponentiality with decreasing P/D ratio. The results of fluorescence polarization suggested that this phenomenon is the result of Förster energy transfer between proflavine molecules bound to the fluorescent site (AT pair) and bound to the quenching site (GC pair). Critical transfer distances were 26-4 and 37.0 Å, respectively, for bound proflavine and acridine orange.  相似文献   

10.
A. Blake  A. R. Peacocke 《Biopolymers》1966,4(10):1091-1104
The optical rotatory dispersion curves of the proflavine cation were measured in the spectral range 400–500 mμ. No optical activity was observed for the free cation but a large positive Cotton effect appeared in the presence of DNA. The effect of ionic strength, denaturation of the DNA, and the DNA/proflavine ratio were studied. The dependence of the magnitude of the Cotton effect on the DNA/proflavine ratio suggests that a nearest-neighbor interaction between bound proflavine molecules is necessary for optical activity. A simple statistical treatment was made which indicated that only a small number of proflavine molecules are required in close proximity for optical activity to occur. Denaturation of the DNA did not destroy the optical activity, which shows that long runs of DNA double helix are not necessary for optical activity of the ligand molecules. The optical rotatory dispersion curves of acridine orange which was bound to DNA were also measured. Two Cotton effects of opposite sense could be distinguished, the relative magnitudes of which depended on the DNA/acridine orange ratio and the state of denaturation of the DNA. The apparent differences from the proflavine-DNA system can to a large extent be explained in terms of the tendency of acridine orange to form aggregates.  相似文献   

11.
1. The effect of proflavine and other acridines on the incorporation of precursors into the nucleic acids of HeLa cells was examined. 2. Relatively low concentrations (50mum) of proflavine completely inhibited incorporation of precursors into DNA, but allowed a small extent of incorporation into RNA. 3. Acridine-resistant incorporation into RNA was unaffected by actinomycin D at 2mug./ml. and persisted even at high concentrations (500mum) of many acridines. 4. A few combinations of acridine and precursor, notably 250mum-proflavine and [(14)C]adenine, caused a stimulation of incorporation. 5. The proflavine-stimulated incorporation was into alkali-stable di- and tri-nucleotides. 6. It was concluded that the effect was due to the preferential inhibition of degradation of a fraction of RNA that normally turned over, thus allowing small radioactive oligonucleotides to accumulate in the cells.  相似文献   

12.
The inhibition of ribonucleic acid polymerase by acridines   总被引:8,自引:6,他引:2       下载免费PDF全文
1. The aminoacridines, proflavine (3,6-diaminoacridine) and 9-aminoacridine, and a hydrogenated derivative, 9-amino-1,2,3,4-tetrahydroacridine, were shown to inhibit in vitro the DNA-primed RNA polymerase of Escherichia coli. The inhibition is strong with both proflavine and 9-aminoacridine, but weak with 9-amino-1,2,3,4-tetrahydroacridine. 2. The extent to which the three acridines bind to calf-thymus DNA in the enzyme medium was studied spectrophotometrically. The extent of binding decreases in the order: proflavine, 9-aminoacridine, 9-amino-1,2,3,4-tetrahydroacridine. Some evidence was also obtained for interaction between the nucleoside triphosphate substrates and proflavine or 9-aminoacridine; no such interaction was detectable with 9-amino-1,2,3,4-tetrahydroacridine. 3. Although the amount of acridine bound to DNA increases with increasing inhibition, a stage is reached where an increase in acridine concentration still causes an increase in inhibition, with practically no increase in the amount bound to DNA. 4. Plots of reciprocal rates against the reciprocal of DNA concentration were linear and had a common intercept when proflavine or 9-aminoacridine was present. Similar relations were obtained when the reciprocal concentration of nucleoside triphosphates was plotted. The observations are interpreted kinetically in terms of a competitive inhibition of the enzyme by proflavine or 9-aminoacridine and of a kinetic role for the DNA analogous to ;activation'. 5. This suggests that inhibitory acridine molecules can occupy the sites on the RNA polymerase that are specific for binding the nucleoside triphosphate substrate or the bases of the DNA, when these become accessible during the copying process.  相似文献   

13.
A delay (~10 min) in the appearance of intracellular phage is caused by preincubating the infecting phage T4o1 in proflavine, acridine orange, or ethidium, but not polyamines. No significant delay in attachment is observed. Apparently the presence of the dye is required inside the permeability barrier of the phage at the time of infection. The effect of proflavine is reduced in the presence of polyamines, suggesting that the active site is on DNA. The phage-host complex is sensitive to shear if the infecting phage have been incubated in proflavine or ethidium, indicating that the completion of DNA injection is delayed. Finally no partially injected complexes could be detected after shearing, which suggests that most of the delay occurs near the beginning of the injection process.  相似文献   

14.
G Speit  W Vogel 《Mutation research》1979,59(2):223-229
Intercalating dyes (acridine orange, proflavin and methylene blue) and drugs (chlorpromazine, promazine and chlorprothixene) were tested for their ability to induce sister-chromatid exchanges (SCEs) with and without photoactivation by visible light. Whereas in the dark all substances tested increased the frequency of SCEs, a superimposed effect of visible light on SCE formation was observed for the acridines proflavin and acridine orange, but not for the pheneothiazine derivatives methylene blue and chlorpromazine. These results are discussed in connection with the known mutagenic effects of these substances and with the factors that may be involved in SCE formation induced by intercalating molecules in the absence and presence of visible light.  相似文献   

15.
Two temperature-sensitive mutants--AP 16 and AP 18 were isolated after the treatment of E. coli AB2500 strain with two mutagens (acridine orange and 5-bromuracil). The mutants obtained proved to be sensitive and formed revertants when treated with the following agents: N-methyl-N'-nitro-N-nitrosoguanidine, hydroxylamine, nitrous acid, sodium metabisulfite, methylmethansulfonate, and proflavine. Introduction into the mentioned strains of additional mutation causing elevation of their sensitivity to crystal violet increased somewhat their capacity to form revertants under the effect of proflavine and methylmethansulfonate.  相似文献   

16.
As shown by electron paramagnetic resonance, acridine orange induces the formation of peroxide radicals in DNA when dye-DNA mixtures frozen at 77 K are irradiated with visible light. The reaction is oxygen dependent and strongly reduced by the addition of an electron scavenger. Factors of the medium can modulate the reaction: an ionic strength increased up to 0.3 greatly enhances the dye efficiency whereas the presence of phosphate ions has an inhibiting influence. Acridine orange, which is slightly less efficient than proflavine on native DNA, induces an important peroxide radical formation in poly(dG).poly(dC) but has no action on the poly(dA).poly(dT)polymer.  相似文献   

17.
The effect of gamma-rays on the binding of proflavine and acridine orange to DNA was investigated by spectrophotometry. The effect of irradiation was observed on the buffered solutions of the free dye and free DNA. A dose of about 35 krad caused a hyperchromicity of 30-40 per cent to the DNA peak at 258 nm, while the same dose introduced a hypochromic effect to the monomer peaks of the dyes by 30 per cent. This implied that gamma-rays have an effect of decreasing the monomer concentration of free-day molecules in solution. From the results, we conclude that more dye is bound to the changed conformation of dye-bound DNA on irradiation. Scratchard-binding isotherms drawn for the unirradiated and irradiated complexes of Pf-DNA showed interesting differences. Similar isotherms could not be obtained for the acridine orange-DNA system.  相似文献   

18.
Acridine orange and proflavine form complexes with the dinucleoside monophosphate, 5-iodocytidylyl(3′–5′)guanosine. The acridine orange-iodoCpG2 crystals are monoclinic, space group P21, with unit cell dimensions a = 14.36 A?, b = 19.64 A?, c = 20.67 A?, β = 102.5 °. The proflavine-iodoCpG crystals are monoclinic, space group C2, with unit cell dimensions a = 32.14 A?, b = 22.23 A?, c = 18.42 A?, β = 123.3 °. Both structures have been solved to atomic resolution by Patterson and Fourier methods, and refined by full matrix least-squares.Acridine orange forms an intercalative structure with iodoCpG in much the same manner as ethidium, ellipticine and 3,5,6,8-tetramethyl-N-methyl phenanthrolinium (Jain et al., 1977, Jain et al., 1979), except that the acridine nucleus lies asymmetrically in the intercalation site. This asymmetric intercalation is accompanied by a sliding of base-pairs upon the acridine nucleus and is similar to that observed with the 9-aminoacridine-iodoCpG asymmetric intercalative binding mode described in the previous papers (Sakore et al., 1977, Sakore et al., 1979). Basepairs above and below the drug are separated by about 6.8 Å and are twisted about 10 °; this reflects the mixed sugar puckering pattern observed in the sugar-phospate chains: C3′ endo (3′–5′) C2′ endo (i.e. each cytidine residue has a C3′ endo sugar comformation, while each guanosine residue has a C2′ endo sugar conformation), alterations in glycosidic torsional angles and other small but significant conformational changes in the sugar-phosphate backbone.Proflavine, on the other hand, demonstrates symmetric intercalation with iodoCpG. Hydrogen bonds connect amino groups on proflavine with phosphate oxygen atoms on the dinucleotide. In contrast to the acridine orange structure, base-pairs above and below the intercalative proflavine molecule are twisted about 36 °. The altered magnitude of this angular twist reflects the sugar puckering pattern that is observed: C3′ endo (3′–5′) C3′ endo. Since proflavine is known to unwind DNA in much the same manner as ethidium and acridine orange (Waring, 1970), one cannot use the information from this model system to understand how proflavine binds to DNA (it is possible, for example, that hydrogen bonding observed between proflavine and iodoCpG alters the intercalative geometry in this model system).Instead, we propose a model for proflavine-DNA binding in which proflavine lies asymmetrically in the intercalation site (characterized by the C3′ endo (3′–5′) C2′ endo mixed sugar puckering pattern) and forms only one hydrogen bond to a neighboring phosphate oxygen atom. Our model for proflavine-DNA binding, therefore, is very similar to our acridine orange-DNA binding model. We will describe these models in detail in this paper.  相似文献   

19.
L Noronha-Blob  J Pitha 《Biochemistry》1979,18(15):3206-3209
The binding of polyuridylate to cells is substantially increased by proflavine. This enhanced binding is saturable with respect to time and to the concentration of both proflavine and polyuridylate. Enhancement is observed only when cells are exposed to both proflavine and polyuridylate together and depends cooperatively on the proflavine concentration. The resulting complex formed between the cell, proflavine, and polyuridylate can be dissociated with salt but not with sucrose solutions. An increase in the binding of polyuridylate to cells similar to that observed with proflavine was also obtained with cationic dyes such as acridine orange, 9-aminoacridine, and Hoechst 33258, while the introduction of a bulky polysaccharide residue, dextran, into the dyes cancels these effects. Similarly, cationic aromatic compounds such as primaquine and quinacrine which carry bulky nonplanar substituents or aliphatic cationic compounds like ethylenediamine do not enhance binding. Proflavine is unable to augment the binding of a basic macromolecule, diethylaminoethylaminoethyldextran, to cells. The model proposed for the enhanced binding of polyuridylate is based on the cooperative formation of stacked complexes of cationic dye located between the cell surface and the bound polyuridylate.  相似文献   

20.
In addition to the acridine dyes, acridine orange and proflavine, we find that three other cationic molecules which bind to DNA-ethidium bromide, chloroquine, and methyl green-inhibit the production of cyclobutyl pyrimidine dimers by ultraviolet radiation. Intercalation is not necessary for dimer inhibition. The long range nature of the inhibition implies that energy transfer is responsible. The transfer is between the lowest excited singlet state of DNA and the acceptor singlet, and seems to involve the F?rster mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号