首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The expression of different types of Ca(2+)-channels was studied using the whole-cell patch-clamp technique in cultured rat aortic smooth-muscle myocytes. Ca(2+)-currents were identified as either low- or high voltage-activated (ICa,LVA or ICa,HVA, respectively) based on their distinct voltage-dependences of activation and inactivation, decay kinetics using Ba2+ as the charge carrier and sensitivity to dihydropyridines. The heterogeneity in the functional expression of the two types of Ca(2+)-channels in the cultured myocytes delineated four distinct phenotypes; (i), cells exhibiting only LVA currents; (ii), cells exhibiting only HVA currents; (iii), cells exhibiting both LVA and HVA currents and (iv), cells exhibiting no current. The myocytes exclusively expressed HVA currents both during the first five days in primary culture and after the cells had reached confluence (> 15 days). In contrast, LVA currents were expressed transiently between 5 and 15 days, during which time the cells were proliferating and had transient loss of contractility. Thus, both LVA and HVA Ca(2+)-current types contribute to Ca(2+)-signalling in cultured rat aortic myocytes. However, the differential expression of the two Ca2+ current types associated with differences in contractile and proliferative phenotypes suggest that they serve distinct cellular functions. Our results are consistent with the idea that LVA current expression is important for cell proliferation.  相似文献   

4.
Phylogenetic analysis of alpha chains of voltage-gated ion channels revealed that extensive gene duplication has occurred among both Ca(2+) and Na(+)-channels since the origin of vertebrates. Rather than showing a pattern of gene duplication consistent with the hypothesis of polyploidization early in vertebrate history, both Ca(2+) and Na(+) channels showed patterns of sequential gene duplication associated with specialization of the gene products. In the case of Na(+) channels, the phylogeny supported the hypothesis that the ancestral vertebrate gene had an expression pattern including both central and peripheral nervous system cells and that duplication of vertebrate Na(+) channel genes has repeatedly been followed by specialization for the central nervous system, the peripheral nervous system, or muscle cells. Thus, cephalization in vertebrate evolution has been accompanied by specialization of this important family of neuromuscular proteins along the central-peripheral axis.  相似文献   

5.
Calcium vector protein (CaVP) is an EF-hand Ca(2+)-binding protein, which is unique to the protochordate, amphioxus. CaVP is supposed to act as a Ca(2+) signal transductor, but its exact function remains unknown. Not only its function but also its exact evolutionary relationship to other Ca(2+)-binding proteins is unclear. To investigate the evolution of CaVP, we have determined the complete sequences of CaVP cDNAs from two amphioxus species, Branchiostoma lanceolatum and B. floridae, whose open reading frame cDNA and amino acid sequences show 96.5 and 98.2% identity, respectively. We have also elucidated the structure of the gene of B. floridae CaVP, which is made up of seven exons and six introns. The positions of four of the six introns (introns 1, 2, 3, and 5) are identical with those of calmodulin, troponin C, and the Spec protein of the sea urchin. These latter proteins belong to the so-called troponin C superfamily (TnC superfamily) and thus CaVP likely also belongs to this family. Intron 6 is positioned in the 3' noncoding region and is unique to CaVP, so it may represent a landmark of the CaVP lineage only. The position of intron 4 is not conserved in the genes of the TnC superfamily or CaVP, and seems to result from either intron sliding or the addition of an intron (randomly inserted into or close to domain III) to the genes of the TnC superfamily during their evolution.  相似文献   

6.
Roles of three domains of Tetrahymena eEF1A in bundling F-actin   总被引:1,自引:0,他引:1  
The conventional role of eukaryotic elongation factor 1A (eEF1A) is to transport aminoacyl tRNA to the A site of ribosomes during the peptide elongation phase of protein synthesis. eEF1A also is involved in regulating the dynamics of microtubules and actin filaments in cytoplasm. In Tetrahymena, eEF1A forms homodimers and bundles F-actin. Ca(2+)/calmodulin (CaM) causes reversion of the eEF1A dimer to the monomer, which loosens F-actin bundling, and then Ca(2+)/CaM/eEF1A monomer complexes dissociate from F-actin. eEF1A consists of three domains in all eukaryotic species, but the individual roles of the Tetrahymena eEF1A domains in bundling F-actin are unknown. In this study, we investigated the interaction of each domain with F-actin, recombinant Tetrahymena CaM, and eEF1A itself in vitro, using three glutathione-S-transferase-domain fusion proteins (GST-dm1, -2, and -3). We found that only GST-dm3 bound to F-actin and influences dimer formation, but that all three domains bound to Tetrahymena CaM in a Ca(2+)-dependent manner. The critical Ca(2+) concentration for binding among three domains of eEF1A and CaM were < or =100 nM for domain 1, 100 nM to 1 microM for domain 3, and >1 microM for domain 2, whereas stimulation of and subsequent Ca(2+) influx through Ca(2+) channels raise the cellular Ca(2+) concentration from the basal level of approximately 100 nM to approximately 10 microM, suggesting that domain 3 has a pivotal role in Ca(2+)/CaM regulation of eEF1A.  相似文献   

7.
Calexcitin (CE) is a calcium sensor protein that has been implicated in associative learning through the Ca(2+)-dependent inhibition of K(+) channels and activation of ryanodine receptors. CE(B), the major CE variant, was identified as a member of the sarcoplasmic Ca(2+) binding protein family: proteins that can bind both Ca(2+) and Mg(2+). We have now determined the intrinsic Ca(2+) and Mg(2+) binding affinities of CE(B) and investigated their interplay on the folding and structure of CE(B). We find that urea denaturation of CE(B) displays a three-state unfolding transition consistent with the presence of two structural domains. Through a combination of spectroscopic and denaturation studies we find that one domain likely possesses molten globule structure and contains a mixed Ca(2+)/Mg(2+) binding site and a Ca(2+) binding site with weak Mg(2+) antagonism. Furthermore, ion binding to the putative molten globule domain induces native structure formation. The other domain contains a single Ca(2+)-specific binding site and has native structure, even in the absence of ion binding. Ca(2+) binding to CE(B) induces the formation of a recessed hydrophobic pocket. On the basis of measured ion binding affinities and intracellular ion concentrations, it appears that Mg(2+)-CE(B) represents the resting state and Ca(2+)-CE(B) corresponds to the active state, under physiological conditions.  相似文献   

8.
The molecular nature of store-operated Ca(2+)-selective channels has remained an enigma, due largely to the continued inability to convincingly demonstrate Ca(2+)-selective store-operated currents resulting from exogenous expression of known genes. Recent findings have implicated two proteins, Stim1 and Orai1, as having essential roles in store-operated Ca(2+) entry across the plasma membrane. However, transient overexpression of these proteins on their own results in little or no increase in store-operated entry. Here we demonstrate dramatic synergism between these two mediators; co-transfection of HEK293 cells with Stim1 and Orai1 results in an approximate 20-fold increase in store-operated Ca(2+) entry and Ca(2+)-selective current. This demonstrates that these two proteins are limiting for both the signaling and permeation mechanisms for Ca(2+)-selective store-operated Ca(2+) entry. There are three mammalian homologs of Orai1, and in expression experiments they all produced or augmented store-operated Ca(2+) entry with efficacies in the order Orai1 > Orai2 > Orai3. Stim1 apparently initiates the signaling process by acting as a Ca(2+) sensor in the endoplasmic reticulum. This results in rearrangement of Stim1 within the cell and migration toward the plasma membrane to regulate in some manner Orai1 located in the plasma membrane. However, we demonstrate that Stim1 does not incorporate in the surface membrane, and thus likely regulates or interacts with Orai1 at sites of close apposition between the plasma membrane and an intracellular Stim1-containing organelle.  相似文献   

9.
Genes encoding calmodulin-binding proteins in the Arabidopsis genome.   总被引:10,自引:0,他引:10  
Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.  相似文献   

10.
The neuronal protein synaptotagmin 1 functions as a Ca(2+) sensor in exocytosis via two Ca(2+)-binding C(2) domains. The very similar synaptotagmin 4, which includes all the predicted Ca(2+)-binding residues in the C(2)B domain but not in the C(2)A domain, is also thought to function as a neuronal Ca(2+) sensor. Here we show that, unexpectedly, both C(2) domains of fly synaptotagmin 4 exhibit Ca(2+)-dependent phospholipid binding, whereas neither C(2) domain of rat synaptotagmin 4 binds Ca(2+) or phospholipids efficiently. Crystallography reveals that changes in the orientations of critical Ca(2+) ligands, and perhaps their flexibility, render the rat synaptotagmin 4 C(2)B domain unable to form full Ca(2+)-binding sites. These results indicate that synaptotagmin 4 is a Ca(2+) sensor in the fly but not in the rat, that the Ca(2+)-binding properties of C(2) domains cannot be reliably predicted from sequence analyses, and that proteins clearly identified as orthologs may nevertheless have markedly different functional properties.  相似文献   

11.
The structure and function of cytosolic Ca(2+)-binding proteins containing EF-hands are well understood. Recently, the presence of EF-hands in an extracellular protein was for the first time proven by the structure determination of the EC domain of BM-40 (SPARC (for secreted protein acidic and rich in cysteine)/osteonectin) (Hohenester, E., Maurer, P., Hohenadl, C., Timpl, R., Jansonius, J. N., and Engel, J. (1996) Nat. Struct. Biol. 3, 67-73). The structure revealed a pair of EF-hands with two bound Ca(2+) ions. Two unusual features were noted that distinguish the extracellular EF-hands of BM-40 from their cytosolic counterparts. An insertion of one amino acid into the loop of the first EF-hand causes a variant Ca(2+) coordination, and a disulfide bond connects the helices of the second EF-hand. Here we show that the extracellular EF-hands in the BM-40 EC domain bind Ca(2+) cooperatively and with high affinity. The EC domain is thus in the Ca(2+)-saturated form in the extracellular matrix, and the EF-hands play a structural rather than a regulatory role. Deletion mutants demonstrate a strong interaction between the EC domain and the neighboring FS domain, which contributes about 10 kJ/mol to the free energy of binding and influences cooperativity. This interaction is mainly between the FS domain and the variant EF-hand 1. Certain mutations of Ca(2+)-coordinating residues changed affinity and cooperativity, but others inhibited folding and secretion of the EC domain in a mammalian cell line. This points to a function of EF-hands in extracellular proteins during biosynthesis and processing in the endoplasmic reticulum or Golgi apparatus.  相似文献   

12.
Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological functions of the plant visinin-like proteins or visinin-like domains in plant proteins are not well known. Using EF-hand deletions in the visinin-like domain, we found that the visinin-like domain regulated Ca(2+)-stimulated autophosphorylation of CCaMK. To investigate the effects of Ca(2+)-stimulated autophosphorylation on the interaction with calmodulin, the equilibrium binding constants of CCaMK were measured by fluorescence emission anisotropy using dansylated calmodulin. Binding was 8-fold tighter after Ca(2+)-stimulated autophosphorylation. This shift in affinity did not occur in CCaMK deletion mutants lacking Ca(2+)-stimulated autophosphorylation. A variable calmodulin affinity regulated by Ca(2+)-stimulated autophosphorylation mediated through the visinin-like domain is a new regulatory mechanism for CCaMK activation and calmodulin-dependent protein kinases. Our experiments demonstrate the existence of two functional molecular switches in a protein kinase regulating the kinase activity, namely a visinin-like domain acting as a Ca(2+)-triggered switch and a CaM-binding domain acting as an autophosphorylation-triggered molecular switch.  相似文献   

13.
14.
15.
The Doc2 family comprises the brain-specific Doc2alpha and the ubiquitous Doc2beta and Doc2gamma. With the exception of Doc2gamma, these proteins exhibit Ca(2+)-dependent phospholipid-binding activity in their Ca(2+)-binding C2A domain and are thought to be important for Ca(2+)-dependent regulated exocytosis. In excitatory neurons, Doc2alpha interacts with Munc13-1, a member of the Munc13 family, through its N-terminal Munc13-1-interacting domain and the Doc2alpha-Munc13-1 system is implicated in Ca(2+)-dependent synaptic vesicle exocytosis. The Munc13 family comprises the brain-specific Munc13-1, Munc13-2, and Munc13-3, and the non-neuronal Munc13-4. We previously showed that Munc13-4 is involved in Ca(2+)-dependent secretory lysosome exocytosis in mast cells, but the involvement of Doc2 in this process is not determined. In the present study, we found that Doc2alpha but not Doc2beta was endogenously expressed in the RBL-2H3 mast cell line. Doc2alpha colocalized with Munc13-4 on secretory lysosomes, and interacted with Munc13-4 through its two regions, the N terminus containing the Munc13-1-interacting domain and the C terminus containing the Ca(2+)-binding C2B domain. In RBL-2H3 cells, Ca(2+)-dependent secretory lysosome exocytosis was inhibited by expression of the Doc2alpha mutant lacking either of the Munc13-4-binding regions and the inhibition was suppressed by coexpression of Munc13-4. Knockdown of endogenous Doc2alpha also reduced Ca(2+)-dependent secretory lysosome exocytosis, which was rescued by re-expression of human Doc2alpha but not by its mutant that could not bind to Munc13-4. Moreover, Ca(2+)-dependent secretory lysosome exocytosis was severely reduced in bone marrow-derived mast cells from Doc2alpha knockout mice. These results suggest that the Doc2alpha-Muunc13-4 system regulates Ca(2+)-dependent secretory lysosome exocytosis in mast cells.  相似文献   

16.
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx   总被引:15,自引:0,他引:15  
Ca(2+) signaling in nonexcitable cells is typically initiated by receptor-triggered production of inositol-1,4,5-trisphosphate and the release of Ca(2+) from intracellular stores. An elusive signaling process senses the Ca(2+) store depletion and triggers the opening of plasma membrane Ca(2+) channels. The resulting sustained Ca(2+) signals are required for many physiological responses, such as T cell activation and differentiation. Here, we monitored receptor-triggered Ca(2+) signals in cells transfected with siRNAs against 2,304 human signaling proteins, and we identified two proteins required for Ca(2+)-store-depletion-mediated Ca(2+) influx, STIM1 and STIM2. These proteins have a single transmembrane region with a putative Ca(2+) binding domain in the lumen of the endoplasmic reticulum. Ca(2+) store depletion led to a rapid translocation of STIM1 into puncta that accumulated near the plasma membrane. Introducing a point mutation in the STIM1 Ca(2+) binding domain resulted in prelocalization of the protein in puncta, and this mutant failed to respond to store depletion. Our study suggests that STIM proteins function as Ca(2+) store sensors in the signaling pathway connecting Ca(2+) store depletion to Ca(2+) influx.  相似文献   

17.
Protein kinase C (PKC) isozymes comprise a family of related enzymes that play a central role in many intracellular eukaryotic signaling events. Isozyme specificity is mediated by association of each PKC isozyme with specific anchoring proteins, termed RACKs. The C2 domain of betaPKC contains at least part of the RACK-binding sites. Because the C2 domain contains also a RACK-like sequence (termed pseudo-RACK), it was proposed that this pseudo-RACK site mediates intramolecular interaction with one of the RACK-binding sites in the C2 domain itself, stabilizing the inactive conformation of betaPKC. BetaPKC depends on calcium for its activation, and the C2 domain contains the calcium-binding sites. The x-ray structure of the C2 domain of betaPKC shows that three Ca(2+) ions can be coordinated by two opposing loops at one end of the domain. Starting from this x-ray structure, we have performed molecular dynamics (MD) calculations on the C2 domain of betaPKC bound to three Ca(2+) ions, to two Ca(2+) ions, and in the Ca(2+)-free state, in order to analyze the effect of calcium on the RACK-binding sites and the pseudo-RACK sites, as well as on the loops that constitute the binding site for the Ca(2+) ions. The results show that calcium stabilizes the beta-sandwich structure of the C2 domain and thus affects two of the three RACK-binding sites within the C2 domain. Also, the interactions between the third RACK-binding site and the pseudo-RACK site are not notably modified by the removal of Ca(2+) ions. On that basis, we predict that the pseudo-RACK site within the C2 domain masks a RACK-binding site in another domain of betaPKC, possibly the V5 domain. Finally, the MD modeling shows that two Ca(2+) ions are able to interact with two molecules of O-phospho-l-serine. These data suggest that Ca(2+) ions may be directly involved in PKC binding to phosphatidylserine, an acidic lipid located exclusively on the cytoplasmic face of membranes, that is required for PKC activation.  相似文献   

18.
19.
The vitamin D-binding protein (DBP), also known as group-specific component or Gc-globulin, is a multifunctional plasma protein that can significantly enhance the leukocyte chemotactic activity to C5a and C5a des-Arg. DBP is a member of the albumin gene family and has a triple domain modular structure with extensive disulfide bonding that is characteristic of this protein family. The goal of this study was to identify a region in DBP that mediates the chemotactic cofactor function for C5a. Full-length and truncated versions of DBP (Gc-2 allele) were expressed in Escherichia coli using a glutathione S-transferase fusion protein expression system. The structure of the expressed proteins was confirmed by SDS-PAGE and immunoblotting, whereas protein function was verified by quantitating the binding of [(3)H]vitamin D. Dibutyryl cAMP-differentiated HL-60 cells were utilized to test purified natural DBP and recombinant expressed DBP (reDBP) for their ability to enhance chemotaxis and intracellular Ca(2+) flux to C5a. Natural and full-length reDBP (458 amino acid residues) as well as truncated reDBPs that contained the N-terminal domain I (domains I and II, residues 1-378; domain I, residues 1-191) significantly enhanced both cell movement and intracellular Ca(2+) concentrations in response to C5a. Progressive truncation of DBP domain I localized the chemotactic enhancing region between residues 126-175. Overlapping peptides corresponding to this region were synthesized, and results indicate that a 20-amino-acid sequence (residues 130-149, 5'-EAFRKDPKEYANQFMWEYST-3') in domain I of DBP is essential for its C5a chemotactic cofactor function.  相似文献   

20.
Denervated fast-twitch rabbit muscles were progressively losing their fresh weight and the yield of sarcotubular protein was increasing. The activity of Ca(2+)-ATPase was affected but very slightly, the basal Mg(2+)-ATPase and the Mg(2+)-ATPase/Ca(2+)-ATPase ratio however increased together with a simultaneous depression of the membrane-bound acetylcholinesterase activity. We did not observe any differences in density properties of sarcotubular fractions between control and denervated muscle. However, a relative enrichment in SM and H fraction could be seen after denervation with small changes in the content of the Ca(2+)-pump protein, increased levels of calsequestrin and cholesterol, mostly in the heavy and the SM fraction. After denervation the binding sites for 3H-PN-200-110 did not show any changes in receptor affinity, but the number of putative Ca(2+)-channels increased twice along with a depression of 3H-ouabain binding sites. We suggest that the denervation of fast-twitch muscle leads to the hypertrophy of the junctional sarcoplasmic reticulum and the T-system. Changes in the cholesterol content, in the number of putative Ca(2+)-channels and in Na+, K(+)-ATPase can affect the muscle contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号