首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

2.
A PPi-dependent phosphofructotransferase (PPi-fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.90) which catalyzes the conversion of fructose 6 phosphate (F-6-P) to fructose 1,6-bisphosphate (F-1, 6-P2) was isolated from a cytoplasmic fraction of Acholeplasma laidlawii B-PG9 and partially purified (430-fold). PPi was required as the phosphate donor. ATP, dATP, CTP, dCTP, GTP, dGTP, UTP, dUTP, ITP, TTP, ADP, or Pi could not substitute for PPi. The PPi-dependent reaction (2.0 mM PPi) was not altered in the presence of any of these nucleotides (2.0 mM) or in the presence of smaller (less than or equal to 300 microM) amounts of fructose 2,6-bisphosphate, (NH4)2SO4, AMP, citrate, GDP, or phosphoenolpyruvate. Mg2+ and a pH of 7.4 were required for maximum activity. The partially purified enzyme in sucrose density gradient experiments had an approximate molecular weight of 74,000 and a sedimentation coefficient of 6.7. A second form of the enzyme (molecular weight, 37,000) was detected, although in relatively smaller amounts, by using Blue Sepharose matrix when performing electrophoresis experiments. The back reaction, F-1, 6-P2 to F-6-P, required Pi; arsenate could substitute for Pi, but not PPi or any other nucleotide tested. The computer-derived kinetic constants (+/- standard deviation) for the reaction in the PPi-driven direction of F-1, 6-P2 were as follows: v, 38.9 +/- 0.48 mM min-1; Ka(PPi), 0.11 +/- 0.04 mM; Kb(F-6-P), 0.65 +/- 0.15 mM; and Kia(PPi), 0.39 +/- 0.11 mM. A. laidlawii B-PG9 required PPi not only for the PPi-phosphofructotransferase reaction which we describe but also for purine nucleoside kinase activity. a dependency unknown in any other organism. In A. laidlawii B-PG9, the PPi requirement may be met by reactions in this organism already known to synthesize PPi (e.g., dUTPase and purine nucleobase phosphoribosyltransferases). In almost all other cells, the conversion of F-6-P to F-1,6-P2 is ATP dependent, and the reaction is generally considered to be the rate-limiting step of glycolysis. The ability of A. laidlawii B-PG9 and one other acholeplasma to use PPi instead of ATP as an energy source may offer these cytochrome-deficient organisms some metabolic advantage and may represent a conserved metabolic remnant of an earlier evolutionary process.  相似文献   

3.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

4.
Kinetic data have been collected suggesting that heterotropic activation by fructose 2,6-bisphosphate and AMP is a result not only of the relief of allosteric inhibition by ATP but is also the result of an increase in the affinity of phosphofructokinase for fructose 6-phosphate. Modification of the Ascaris suum phosphofructokinase at the ATP inhibitory site produces a form of the enzyme that no longer has hysteretic time courses or homotropic positive (fructose 6-phosphate) cooperativity or substrate inhibition (ATP) (Rao, G.S. J., Wariso, B.A., Cook, P.F., Hofer, H.W., and Harris, B.G. (1987a) J. Biol. Chem. 262, 14068-14073). This form of phosphofructokinase is Michaelis-Menten in its kinetic behavior but is still activated by fructose 2,6-bisphosphate and AMP and by phosphorylation using the catalytic subunit of cyclic AMP-dependent protein kinase (cAPK). Fructose 2,6-bisphosphate activates by decreasing KF-6-P by about 15-fold and has an activation constant of 92 nM, while AMP decreases KF-6-P about 6-fold and has an activation constant of 93 microM. Double activation experiments suggest that fructose 2,6-bisphosphate and AMP are synergistic in their activation. The desensitized form of the enzyme is phosphorylated by cAPK and has an increased affinity for fructose 6-phosphate in the absence of MgATP. The increased affinity results in a change in the order of addition of reactants from that with MgATP adding first for the nonphosphorylated enzyme to addition of fructose 6-phosphate first for the phosphorylated enzyme. The phosphorylated form of the enzyme is also still activated by fructose 2,6-bisphosphate and AMP.  相似文献   

5.
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) was purified from the mung bean Phaseolus aureus. The enzyme is activated by fructose 2,6-bisphosphate at nanomolar concentrations. The enzyme exhibits Michaelis-Menten kinetics, and the reaction mechanism, deduced from initial velocity studies in the absence of inhibitors as well as product and dead-end inhibition studies, is rapid equilibrium random in the presence and absence of fructose 2,6-bisphosphate. In the direction of fructose 6-phosphate phosphorylation, saturating fructose 2,6-bisphosphate (1 microM) increases V congruent to 9-fold and increases V/KMgPPi and V/KF6P about 30-fold. In the reverse direction (phosphate phosphorylation), the same concentration of activator has little if any effect on V or the Km for inorganic phosphate (Pi) and Mg2+ but does increase V/KFBP about 42-fold. No changes were observed in any of the other rate constants. The binding affinity of fructose 2,6-bisphosphate to all enzyme forms is identical. The activator site of the mung bean PPi-PFK binds fructose 2,6-bisphosphate with a Kact of 30 nM with the 2,5-anhydro-D-glucitol 1,6-bisphosphate (the most effective analogue) 33-fold less tightly. Of the alkanediol bisphosphate series, 1,4-butanediol bisphosphate exhibited the tightest binding (Kact congruent to 3 microM). These and a series of other activating analogues are discussed in relation to the activator site.  相似文献   

6.
Van Praag E  Tzur A  Zehavi U  Goren R 《IUBMB life》2000,49(2):149-152
Shamouti phosphofructokinase (PFP) activation depends on the presence of fructose 2,6-bisphosphate (Fru-2,6-P2) in the glycolytic reaction. The effect of activation by Fru-2,6-P2 differs considerably, however, according to the buffer (pH 8.0) in which the reaction is performed: Ka = 2.77 +/- 0.3 nM in Hepes-NaOH and 7.75 +/- 1.49 nM in Tris-HCl. The presence of chloride ions (39 mM) in the Tris-HCl buffer inhibits PFP. Indeed, when using a Hepes-NaOH buffer and then adding 39 mM NaCl, Ka = 8.12 +/- 0.52 nM. The Ki for chloride ions is approximately 21.7 mM. In the gluconeogenic reaction, Shamouti PFP generally showed a high endogenous activity. Addition of Fru-2,6-P2 did not modify the velocity and the Vmax of the enzyme; however, its presence increased the affinity of the enzyme for Fru-1,6-P2 from 200 +/- 15.6 microM in absence of Fru-2,6-P2 to 89 +/- 10.3 microM in its presence (10 microM). In the presence of chloride (39 mM), the affinity for the substrate decreased with K(m) = 150 +/- 14 microM. The calculated Ki for chloride ions equals 56.9 mM. In both the glycolytic and the gluconeogenic reactions, Vmax is not affected; therefore, the inhibition mode of chloride is competitive.  相似文献   

7.
Fructose 2,6-bisphosphate (F-2,6-P2) stimulated glycolysis in cell-free extracts of both normal and ras-transfected rat-1 fibroblasts. The extract of the transformed cell glycolyzed more rapidly in both the absence and the presence of F-2,6-P2 than the extract of the parent fibroblast. Addition of mitochondrial ATPase (F1) or inorganic phosphate (Pi) further stimulated lactate production in both cell lines. F-2,6-P2 stimulated the 6-phosphofructo-1-kinase (PFK-1) activity in extracts of normal and transfected cells. The activity in extracts of transformed cells tested with a fructose 6-phosphate regenerating system was considerably higher than in the extract of normal cells. Stimulation of PFK-1 activity by cAMP of both cell lines was not as pronounced as that by F-2,6-P2. In the absence of F-2,6-P2 the PFK-1 activity was strongly inhibited in the transformed cell by ATP concentrations higher than 1 mM, whereas in the normal cell only a marginal inhibition was noted even at 2 or 3 mM ATP. F-2,6-P2 reversed the inhibition of PFK-1 by ATP. Nicotinamide adenine dinucleotide (NAD) at 100 microM (in the presence of 2 mM ATP and 1 microM F-2,6-P2) stimulated PFK-1 activity only in the transformed cell, whereas nicotinamide adenine dinucleotide phosphate (NADP) inhibited PFK-1 activity (in the presence or absence of 1 microM F-2,6-P2) in extracts of both cell lines. No previous observations of stimulation or inhibition by NAD or NADP on PFK-1 activity appear to have been reported. A threefold increase in the intracellular concentration of F-2,6-P2 was observed after transfection of rat-1 fibroblast by the ras oncogene. We conclude from these data that the PFK-1 activity of ras-transfected rat-1 fibroblasts shows a greater response to certain stimulating and inhibitory regulating factors than that of the parent cell.  相似文献   

8.
Phosphofructokinase from oyster (Crassostrea virginica) adductor muscle occurs in a single electrophorectic form at an activity of 8.1 mumol of product formed per minute per gram wet weight. The enzyme was purified to homogeneity by a novel method involving extraction in dilute ethanol and subsequent precipitation with polyethylene glycol. Oyster adductor phosphofructokinase has a molecular weight of 3400000 +/- 20000 as measured by Sephadex gel chromatography. Mg2+ or Mn2+ can satisfy the divalent ion requirement while ATP, GTP, or ITP can serve as phosphate donors for the reaction. Oyster adductor phosphofructokinase displays hyperbolic saturation kinetics with respect to all substrates (fructose 6-phosphate, ATP, and Mg2+) at either pH 7.9 OR PH 6.8. The Michaelis constant for fructose 6 phosphate at pH 6.8, the cellular pH of anoxic oyster tissues, is 3.5 mM. In the presence of AMP, by far the most potent activator and deinhibitor of the enzyme, this drops to 0.70 mM. Many traditional effectors of phosphofructokinase including citrate, NAD(P)H,Ca2+, fructose 1,6-bisphosphate, 3-phosphoglycerate, ADP, and phosphoenolpyruvate do not alter enzyme activity when tested at their physiological concentrations. Monovalent ions (K +, NH4+) are activators of the enzyme. ATP and arginine phosphate are the only compounds found to inhibit the adductor enzyme. The inhibitory action of both can be reversed by physiological concentrations of AMP(0.2- 1.0mM) and to a lesser extent by high concentrations of Pi (20 mM) and adenosine 3' :5'-monophosphate (0.1 mM). The two inhibitors exhibit very different pH versus inhibition profiles. The Ki (ATP) decreases from 5.0 mM to 1.3 mM as the pH decreases from 7.9 to 6.8, whereas the Ki for arginine phosphate increases from 1.3 mM to 4.5 mM for the same pH drop. Of all compounds tested, only AMP, within its physiological range, activated adductor phosphofructokinase significantly at low pH values. The kinetic data support the proposal that arginine phosphate, not ATP or citrate, is the most likely regulator of adductor phosphofructokinase in vivo under aerobic, high tissue pH, conditions. In anoxia, the depletion of arginine phosphate reserves and the increase in AMP concentrations in the tissue, coupled with the increase in the Ki for arginine phosphate brought about by low pH conditions, serves to activate phosphofructokinase to aid maintenance of anaerobic energy production.  相似文献   

9.
Phosphofructokinase 2 from Saccharomyces cerevisiae was purified 8500-fold by chromatography on blue Trisacryl, gel filtration on Superose 6B and chromatography on ATP-agarose. Its apparent molecular mass was close to 600 kDa. The purified enzyme could be activated fivefold upon incubation in the presence of [gamma-32P]ATP-Mg and the catalytic subunit of cyclic-AMP-dependent protein kinase from beef heart; there was a parallel incorporation of 32P into a 105-kDa peptide and also, but only faintly, into a 162-kDa subunit. A low-Km (0.1 microM) fructose-2,6-bisphosphatase could be identified both by its ability to hydrolyze fructose 2,6-[2-32P]bisphosphate and to form in its presence an intermediary radioactive phosphoprotein. This enzyme was purified 300-fold, had an apparent molecular mass of 110 kDa and was made of two 56-kDa subunits. It was inhibited by fructose 6-phosphate (Ki = 5 microM) and stimulated 2-3-fold by 50 mM benzoate or 20 mM salicylate. Remarkably, and in deep contrast to what is known of mammalian and plant enzymes, phosphofructokinase 2 and the low-Km fructose-2,6-bisphosphatase clearly separated from each other in all purification procedures used. A high-Km (approximately equal to 100 microM), apparently specific, fructose 2,6-bisphosphatase was separated by anion-exchange chromatography. This enzyme could play a major role in the physiological degradation of fructose 2,6-bisphosphate, which it converts to fructose 6-phosphate and Pi, because it is not inhibited by fructose 6-phosphate, glucose 6-phosphate or Pi. Several other phosphatases able to hydrolyze fructose 2,6-bisphosphate into a mixture of fructose 2-phosphate, fructose 6-phosphate and eventually fructose were identified. They have a low affinity for fructose 2,6-bisphosphate (Km greater than 50 microM), are most active at pH 6 and are deeply inhibited by inorganic phosphate and various phosphate esters.  相似文献   

10.
The effect of natural "activation factor" and synthetic fructose-2,6-P2 on the allosteric kinetic properties of liver and muscle phosphofructokinases was investigated. Both synthetic and natural fructose-2,6-P2 show identical effects on the allosteric kinetic properties of both enzymes. Fructose-2,6-P2 counteracts inhibition by ATP and citrate and decreases the Km for fructose-6-P. This fructose ester also acts synergistically with AMP in releasing ATP inhibition. The Km values of liver and muscle phosphofructokinase for fructose-2,6-P2 in the presence of 1.25 mM ATP are 12 milliunits/ml (or 24 nM) and 5 milliunits/ml (or 10 nM), respectively. At near physiological concentrations of ATP (3 mM) and fructose-6-P (0.2 mM), however, the Km values for fructose-2,6-P2 are increased to 12 microM and 0.8 microM for liver and muscle enzymes, respectively. Thus, fructose-2,6-P2 is the most potent activator of the enzyme compared to other known activators such as fructose-1,6-P2. The rates of the reaction catalyzed by the enzymes under the above conditions are nonlinear: the rates decelerate in the absence or in the presence of lower concentrations of fructose-2,6-P2, but the rates become linear in the presence of higher concentrations of fructose-2,6-P2. Fructose-2,6-P2 also protects phosphofructokinase against inactivation by heat. Fructose-2,6-P2, therefore, may be the most important allosteric effector in regulation of phosphofructokinase in liver as well as in other tissues.  相似文献   

11.
The influence that fructose 2,6-bisphosphate (Fru-2,6-BP) has on the aggregation properties of rat liver phosphofructokinase has been studied by observing the fluorescence polarization of the enzyme covalently bound to the fluorescent probe pyrenebutyric acid. Fru-2,6-BP dramatically slows the dissociation of the high molecular weight aggregate forms of the enzyme when the enzyme is diluted to 3.2 micrograms/ml (4 X 10(-8) M subunits). Furthermore, Fru-2,6-BP is a strong promoter of reassociation to tetramer and larger forms if the enzyme has been previously allowed to dissociate to the dimer in its absence. Unlike many other positive effectors of liver phosphofructokinase, Fru-2,6-BP is also able to overcome the tendency of MgATP to promote tetramer formation and instead stabilize a very high degree of high molecular weight aggregate formation even in the presence of MgATP. The apparent affinity of liver phosphofructokinase for Fru-2,6-BP was measured by its ability to promote reassociation and compared to that for Fru-1,6-BP. The apparent dissociation constant for Fru-2,6-BP under these conditions is 36 microM, about 40-fold lower than the value of 1.4 mM measured for Fru-1,6-BP. Both ligands demonstrate synergism with the substrate Fru-6-P, which can lower the dissociation constant for Fru-2,6-BP 9-fold to 4 microM and that for Fru-1,6-BP 5-fold to 0.28 mM. These data are interpreted to suggest that influencing the aggregation state of rat liver phosphofructokinase may be one way in which Fru-2,6-BP achieves its effects on the enzyme in vivo.  相似文献   

12.
Ribose 1,5-bisphosphate (Rib-1,5-P2), a newly discovered activator of rat brain phosphofructokinase, forms rapidly during the initiation of glycolytic flux and disappears within 20 s (Ogushi, S., Lawson, J.W. R., Dobson, G.P., Veech, R.L., and Uyeda, K. (1990) J. Biol. Chem. 265, 10943-10949). Activation of various mammalian phosphofructokinases and plant pyrophosphate-dependent phosphofructokinases by Rib-1,5-P2 was investigated. The order of decreasing potency for activation of rabbit muscle phosphofructokinase was: fructose (Fru) 2,6-P2, Rib-1,5-P2, Fru-1,6-P2, Glc-1,6-P2, phosphoribosylpyrophosphate, ribulose-1,5-P2, sedoheptulose-1,7-P2, and myoinositol-1,4-P2. The K0.5 values for activation by Rib-1,5-P2 of rat brain, rat liver, and rabbit muscle phosphofructokinases and potato and mung bean pyrophosphate-dependent phosphofructokinases were 64 nM, 230 nM, 82 nM, 710 nM, and 80 microM, respectively. The corresponding K0.5 values for Fru-2,6-P2 were 9, 8.6, 10, 7, and 65 nM, respectively. Rib-1,5-P2 was a competitive inhibitor of Fru-2,6-P2, binding to the muscle enzyme with Ki of 26 microM. Citrate increased the K0.5 for Rib-1,5-P2 without affecting the maximum activation, and AMP lowered the K0.5 for Rib-1,5-P2 without affecting the maximum activation. These effects of citrate and AMP were similar to those observed with Fru-2,6-P2 and different from those with Fru-1,6-P2. Rib-1,5-P2 is the second most potent activator of phosphofructokinase thus far discovered. The Rib-1,5-P2-activated conformation of the enzyme seems to be similar to that induced by Fru-2,6-P2, but different from that induced by Fru-1,6-P2.  相似文献   

13.
Fructose 2,6-bisphosphate inhibited all three fructose-1,6-bisphosphatases from the liver, intestine, and muscle of the mouse. The sensitivity of the liver enzyme to the inhibitor was significantly diminished when Mg2+ was replaced by Mn2+ as the activating cation. Inhibition of the liver enzyme by fructose 2,6-bisphosphate decreased as the concentration of the metal activator, Mn2+ or Mg2+, increased. The respective I50 values obtained by extrapolation of metal ion concentrations to zero were 40 microM with Mn2+ and 0.25 microM with Mg2+. The extent of desensitization to either fructose 2,6-bisphosphate or AMP inhibition by Mn2+ decreased in the order of the liver, intestine, and muscle enzyme. Only in the case of the liver enzyme was the substrate cooperativity induced by fructose 2,6-bisphosphate in the presence of Mg2+. In all three isoenzymes from the mouse, fructose 2,6-bisphosphate greatly potentiated the AMP inhibition of the enzyme in the presence of either Mg2+ or Mn2+. The liver enzyme with Mn2+ in addition to Mg2+ was still active in the presence of less than 1 microM fructose 2,6-bisphosphate, even though AMP was present at 100-200 microM.  相似文献   

14.
To clarify the physiological role of fructose 2,6-bisphosphate in the perinatal switching of myocardial fuels from carbohydrate to fatty acids, the kinetic effects of fructose 2,6-bisphosphate on phosphofructokinase purified from fetal and adult rat hearts were compared. For both enzymes at physiological pH and ATP concentrations, 1 microM fructose 2,6-bisphosphate induced a greater than 10-fold reduction in S0.5 for fructose 6-phosphate and it completely eliminated subunit cooperativity. Fructose 2,6-bisphosphate may thereby reduce the influence of changes in fructose 6-phosphate concentration on phosphofructokinase activity. Based on double-reciprocal plots and ATP inhibition studies, adult heart phosphofructokinase activity is more sensitive to physiological changes in ATP and citrate concentrations than to changes in fructose 2,6-bisphosphate concentrations. Fetal heart phosphofructokinase is less sensitive to ATP concentration above 5 mM and equally sensitive to citrate inhibition. The fetal enzyme has up to a 15-fold lower affinity for fructose 2,6-bisphosphate, rendering it more sensitive to changes in fructose 2,6-bisphosphate concentration than adult heart phosphofructokinase. Together, these factors allow greater phosphofructokinase activity in fetal heart while retaining sensitive metabolic control. In both fetal and adult heart, fructose 2,6-bisphosphate is primarily permissive: it abolishes subunit cooperativity and in its presence phosphofructokinase activity is extraordinarily sensitive to both the energy balance of the cell as reflected in ATP concentration and the availability of other fuels as reflected in cytosolic citrate concentration.  相似文献   

15.
B Philippe  G G Rousseau  L Hue 《FEBS letters》1986,200(1):169-172
Epididymal bovine sperm contain fructose-1,6-bisphosphatase activity which is inhibited by AMP and by fructose 2,6-bisphosphate. Sperm phosphofructokinase displays kinetic characteristics that are typical of the F-type and it is stimulated by fructose 2,6-bisphosphate. The concentration of sperm fructose 2,6-bisphosphate remained unaffected at 1-2 microM when the glycolytic rate was either increased by glucose, caffeine or antimycin, or decreased by alpha-chlorohydrin or 6-chloro-6-deoxyglucose.  相似文献   

16.
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.  相似文献   

17.
The binding of the inhibitory ligands fructose 2,6-bisphosphate and AMP to rat liver fructose 1,6-bisphosphatase has been investigated. 4 mol of fructose-2,6-P2 and 4 mol of AMP bind per mol of tetrameric enzyme at pH 7.4. Fructose 2,6-bisphosphate exhibits negative cooperatively as indicated by K'1 greater than K'2 greater than K'3 greater than or equal to K'4 and a Hill plot, the curvature of which indicates K'2/K'1 less than 1, K'3/K'2 less than 1, and K'4/K'3 = 1. AMP binding, on the other hand, exhibits positive cooperativity as indicated by K'1 less than K'2 less than K'3 less than K'4 and an nH of 2.05. Fructose 2,6- and fructose 1,6-bisphosphates enhance the binding of AMP as indicated by an increase in the intrinsic association constants. At pH 9.2, where fructose 2,6-bisphosphate and AMP inhibition of the enzyme are diminished, fructose 2,6-bisphosphate binds with a lower affinity but in a positively cooperative manner, whereas AMP exhibits half-sites reactivity with only 2 mol of AMP bound per mol of tetramer. Ultraviolet difference spectroscopy confirmed the results of these binding studies. The site at which fructose 2,6-bisphosphate binds to fructose 1,6-bisphosphatase has been identified as the catalytic site on the basis of the following. 1) Fructose 2,6-bisphosphate binds with a stoichiometry of 1 mol/mol of monomer; 2) covalent modification of the active site with acetylimidazole inhibits fructose 2,6-bisphosphate binding; and 3) alpha-methyl D-fructofuranoside-1,6-P2 and beta-methyl D-fructofuranoside-1,6-P2, substrate analogs, block fructose 2,6-bisphosphate binding. We propose that fructose 2,6-bisphosphate enhances AMP affinity by binding to the active site of the enzyme and bringing about a conformational change which may be similar to that induced by AMP interaction at the allosteric site.  相似文献   

18.
Phosphofructokinase from the flight muscle of bumblebee was purified to homogeneity and its molecular and catalytic properties are presented. The kinetic behavior studies at pH 8.0 are consistent with random or compulsory-order ternary complex. At pH 7.4 the enzyme displays regulatory behavior with respect to both substrates, cooperativity toward fructose 6-phosphate, and inhibition by high concentration of ATP. Determinations of glycolytic intermediates in the flight muscle of insects exposed to low and normal temperatures showed statistically significant increases in the concentrations of AMP, fructose 2,6-bisphosphate, and glucose 6-phosphate during flight at 25 degrees C or rest at 5 degrees C. Measuring the activity of phosphofructokinase and fructose 1,6-bisphosphatase at 25 and 7.5 degrees C, in the presence of physiological concentrations of substrates and key effectors found in the muscle of bumblebee kept under different environmental temperatures and activity levels, suggests that the temperature dependence of fructose 6-phosphate/fructose 1,6-bisphosphate cycling may be regulated by fluctuation of fructose 2,6-bisphosphate concentration and changes in the affinity of both enzymes for substrates and effectors. Moreover, in the presence of in vivo concentrations of substrates, phosphofructokinase is inactive in the absence of fructose 2,6-bisphosphate.  相似文献   

19.
Low phosphate and high phosphate forms of phosphofructokinase (Furuya, E., and Uyeda, K. (1980) J. Biol. Chem. 255, 11656-11659) from rat liver were purified to homogeneity and various properties were compared. The specific activities of these enzymes and their electrophoretic mobilities on polyacrylamide in sodium dodecyl sulfate are the same. A limited tryptic digestion yields products with no change in the enzyme activity but with a reduction in the molecular weight of about 2000. Both low and high phosphate enzymes can be phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, and approximately twice as much [32P]phosphate is incorporated into the low phosphate than the high phosphate enzyme. A comparison of their allosteric kinetic properties reveal that the high phosphate enzyme is much more sensitive to inhibition by ATP and citrate and shows a higher K0.5 for fructose 6-phosphate than the low phosphate enzyme, and the difference in the K0.5 values becomes greater at lower pH values. Furthermore, the high phosphate phosphofructokinase is less sensitive to activation by AMP and fructose 2,6-bisphosphate. Moreover, when the low phosphate enzyme is phosphorylated by protein kinase, the resulting phosphorylated enzyme exhibits a higher K0.5 for fructose 2,6-bisphosphate than does the untreated enzyme. These results demonstrate that the phosphorylation affects the allosteric kinetic properties of the enzyme and results in a less active form of phosphofructokinase.  相似文献   

20.
Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate   总被引:20,自引:0,他引:20  
Rat liver fructose-1,6-bisphosphatase, which was assayed by measuring the release of 32P from fructose 1,6-[1-32P]bisphosphate at pH 7.5, exhibited hyperbolic kinetics with regard to its substrate. beta-D-Fructose 2,6-bisphosphate, an activator of hepatic phosphofructokinase, was found to be a potent inhibitor of the enzyme. The inhibition was competitive in nature and the Ki was estimated to be 0.5 microM. The Hill coefficient for the reaction was 1.0 in the presence and absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate also enhanced inhibition of the enzyme by the allosteric inhibitor AMP. The possible role of fructose 2,6-bisphosphate in the regulation of substrate cycling at the fructose-1,6-bisphosphatase step is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号