首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Most of the known naphthalene biodegradation plasmids determine the process of naphthalene degradation via salicylate and catechol using the meta pathway of catechol degradation. However, Pseudomonas putida strains with plasmids pBS2, pBS216, pBS217 and NPL-1 exert no activity of the enzymes involved in the meta pathway of catechol degradation. When 2-methylnaphthalene was added to the medium as a sole carbon source, mutants growing on this compound were isolated in the strains with the studied plasmids. Plasmid localization of the mutations was established using conjugation transfer as well as by obtaining spontaneous variants that had lost the ability to grow on 2-methylnaphthalene; the respective plasmid mutants were referred to as pBS101, pBS102, pBS103 and pBS105. The strains with the mutant plasmids were tested for the activity of the key enzymes involved in naphthalene catabolism and the activity of catechol-2,3-dioxygenase was found. The data allow one to arrive at the conclusion that plasmids pBS2, pBS216, pBS217 and NPL-1 contain silent genes for the meta pathway of catechol degradation, which are activated by the respective mutations.  相似文献   

2.
The size of the TOL plasmid pWW20 from Pseudomonas putida MT20, as measured by analysis of agarose electrophoresis gels after restriction endonuclease hydrolysis, was 270-280 kilobase pairs (kb). During growth on benzoate, MT20 segregates strains carrying mutations in the plasmid regulatory gene xylS; these so-called B3 strains retain the ability to grow on m-xylene (Mxy+) but do not grow on its metabolite m-toluate (Mtol-) and have also lost the ability to transfer the plasmid (Tra-). Analysis of restriction digests of plasmid DNA from seven such segregants, independently isolated, showed that pWW20 had undergone extensive deletions of 90-100 kb. All the deleted plasmids had lost a common core of DNA, of about 72-80 kb, but in class A mutants the deletion extended at one end of this core and in class B mutants at the other end. Class A and B mutants also differed in their rate of growth on m-xylene as a result of differences in the level of expression of their plasmid-coded catabolic enzymes. This suggests that an additional gene, involved in regulating levels of gene expression, is located in the region uniquely deleted in the class B mutants.  相似文献   

3.
Catechol oxygenases of Pseudomonas putida mutant strains.   总被引:4,自引:4,他引:0       下载免费PDF全文
Investigation of a mutant strain of Pseudomonas putida NCIB 10015, strain PsU-E1, showed that it had lost the ability to produce catechol 1,2-oxygenase after growth with catechol. Additional mutants of both wild-type and mutant strains PsU-E1 have been isolated that grow on catechol, but not on benzoate, yet still form a catechol 1,2-oxygenase when exposed to benzoate. These findings indicate that either there are separately induced catechol 1,2-oxygenase enzymes, or that there are two separate inducers for the one catechol 1,2-oxygenase enzyme. Comparisons of the physical properties of the catechol 1,2-oxygenases formed in response to the two different inducers show no significant differences, so it is more probable that the two proteins are the product of the same gene. Sufficient enzymes of the ortho-fission pathway are induced in the wild-type strain by the initial substrate benzoate (or an early intermediate) to commit that substrate to metabolism by ortho fission exclusively. A mechanism exists that permits metabolism of catechol by meta fission if the ortho-fission enzymes are unable to prevent its intracellular accumulation.  相似文献   

4.
Thirteen bacteria have been isolated from nine different soil samples by selective enrichment culture on m-toluate (m-methylbenzoate) minimal medium. Eight of these were classified as Pseudomonas putida, one as a fluorescent Pseudomonas sp., and four as nonfluorescent Pseudomonas sp. All 13 strains appeared to carry TOL plasmids superficially similar to that previously described in P. putida mt-2 in that: (i) all the wild-type strains could utilize toluene, m-xylene, and p-xylene as sole carbon and energy sources, (ii) these growth substrates were metabolized through the corresponding alcohols and aldehydes to benzoate, m-toluate, and p-toluate, respectively, and thence by the divergent meta (or alpha-ketoacid) pathway, and (iii) the isolates could simultaneously and spontaneously lose their ability to utilize the hydrocarbons, alcohols, aldehydes, and acids, particularly during growth on benzoate, giving rise to cured strains which could grow only on benzaldehyde and benzoate of the aromatic substrates by the alternative ortho (or beta-ketoadipate) pathway. Eight of the isolates were able to transfer their TOL plasmids into their own cured strains, but only five were able to transfer them in interstrain conjugation into the cured strains, but only five were able to transfer them in interstrain conjugation into the cured derivative of P. putida mt-2. However, P. putida mt-2 was able to transfer its TOL plasmid into 11 of the cured isolates, and eight of these were able to retransmit this foreign plasmid in intrastrain conjugation with their own cured derivatives. Three of the isolates, MT 14, MT 15, and MT 20, differed significantly from the others in that the wild-type strains dissimilated the p-methyl-substituted substrates poorly, and also, during growth on benzoate, in addition to the cured derivatives, they gave rise to derivatives with a phenotype intermediate between the cured and wild-type strains, the biochemical and genetic nature of which has not been elucidated.  相似文献   

5.
pWW53 is a 110 kbp catabolic plasmid which encodes the complete pathway for the utilization of toluene and the xylenes. The upper pathway operon xylCAB is located between two homologous but distinct meta pathway operons, xylDLEGF(I,J,K)H, which are in direct repeat. These have each been cloned on large HindIII restriction fragments HA (17.5 kbp) and HB (15.6 kbp), the restriction sites of which have been mapped. During growth of MT53 on benzoate, mutants which have lost the ability to grow on hydrocarbons such as m-xylene (Mxy-) but which retain the ability to grow on their carboxylic acid metabolites such as m-toluate (Mtol+) take over the culture before ultimately being displaced by plasmid-free strains which are Mxy- Mtol-. The plasmids in the Mxy- Mtol+ mutants are formed by a large deletion between homologous regions of the two duplicate meta pathway operons. This causes the loss of the intervening xylCAB operon and the formation of a hybrid xylDLEGF(I, J, K)H operon, starting with the genes originally on HA and terminating with the genes originally on HB.  相似文献   

6.
Catechol occurs as an intermediate in the metabolism of both benzoate and phenol by strains of Pseudomonas putida. During growth at the expense of benzoate, catechol is cleaved ortho (1,2-oxygenase) and metabolized via the beta-ketoadipate pathway; during growth at the expense of phenol or cresols, the catechol or substituted catechols formed are metabolized by a separate pathway following meta (2,3-oxygenase) cleavage of the aromatic ring of catechol. It is possible to explain the mutually exclusive occurrence of the meta and ortho pathway enzymes in phenol- and benzoate-grown cells of P. putida on the basis of differences in the mode of regulation of these two pathways. By use of both nonmetabolizable inducers and blocked mutants, gratuitous synthesis of some of the meta pathway enzymes was obtained. All four enzymes of the meta pathway are induced by the primary substrate, cresol or phenol, or its analogue. Three enzymes of the ortho pathway that catalyze the conversion of catechol to beta-ketoadipate enol-lactone are induced by cis,cis-muconate, produced from catechol by 1,2-oxygenase-mediated cleavage. Observations on the differences in specificity of induction and function of the two pathways suggest that they are not really either tangential or redundant. The meta pathway serves as a general mechanism for catabolism of various alkyl derivatives of catechol derived from substituted phenolic compounds. The ortho pathway is more specific and serves primarily in the catabolism of precursors of catechol and catechol itself.  相似文献   

7.
During growth on benzoate-minimal medium Pseudomonas putida mt-2 (PaW1) segregates derivative ('cured') strains which have lost the ability to use the pathway encoded by its resident catabolic plasmid pWW0. Experiments with two plasmids identical to pWW0 but each with an insert of Tn401, which confers resistance to carbenicillin, suggested that the 'benzoate curing' occurs far more frequently by the specific deletion of the 39 kbp region carrying the catabolic genes than by total plasmid loss. This effect was not pH-dependent, and was not produced during growth on other weak organic acids, such as succinate or propionate, or when benzoate was present in the medium with an alternative, preferentially used carbon source such as succinate. Growth on benzoate did not cause loss from strain PaW174 of the plasmid pWW0174, a derivative of pWW0 which has deleted the 39 kbp region but carries Tn401. Similarly the naphthalene-catabolic plasmid pWW60-1, of the same incompatibility group as pWW0, was not lost from PaW701 during growth on benzoate. Competition between wild-type PaW1 and PaW174, which has the 'cured' phenotype, showed that the latter has a distinct growth advantage on benzoate over the wild-type even when initially present as only 1% of the population: when PaW174 was seeded at lower cell ratios, spontaneously 'cured' derivatives of PaW1 took over the culture after 60-80 generations, indicating that they are present in PaW1 cultures at frequencies between 10(-2) and 10(-3). We conclude that the progressive takeover of populations of PaW1 only occurs when benzoate is present as the sole growth source and that neither benzoate, nor other weak acids, affect plasmid segregation or deletion events: a sufficient explanation is that the 'cured' segregants grow faster than the wild-type using the chromosomally determined beta-ketoadipate pathway.  相似文献   

8.
Pseudomonas putida mt-2 carries a plasmid (TOL, pWWO) which codes for a single set of enzymes responsible for the catabolism of toluene and m- and p-xylene to central metabolites by way of benzoate and m- and p-toluate, respectively, and subsequently by a meta cleavage pathway. Characterization of strains with mutations in structural genes of this pathway demonstrates that the inducers of the enzymes responsible for further degradation of m-toluate include m-xylene, m-methylbenzyl alcohol, and m-toluate, whereas the inducers of the enzymes responsible for oxidation of m-xylene to m-toluate include m-xylene and m-methylbenzyl alcohol but not m-toluate. A regulatory mutant is described in which m-xylene and m-methylbenzyl alcohol no longer induce any of the pathway enzymes, but m-toluate is still able to induce the enzymes responsible for its own degradation. Among revertants of this mutant are some strains in which all the enzymes are expressed constitutively and are not further induced by m-xylene. A model is proposed for the regulation of the pathway in which the enzymes are in two regulatory blocks, which are under the control of two regulator gene products. The model is essentially the same as proposed earlier for the regulation of the isofunctional pathway on the TOL20 plasmid from P. putida MT20.  相似文献   

9.
Pseudomonas putida grown in continuous culture on benzoate or m-toluate lost the ability to grow on benzoate or m-toluate plates. A similar effect was not seen with a glucose continuous culture. Cells carrying and expressing a TOL plasmid rapidly lost their ability to grow on benzoate solid medium.  相似文献   

10.
Pseudomonas putida PMD-1 dissimilates naphthalene (Nah), salicylate (Sal), and benzoate (Ben) via catechol which is metabolized through the meta (or alpha-keto acid) pathway. The ability to utilize salicylate but not naphthalene was transferred from P. putida PMD-1 to several Pseudomonas species. Agarose gel electrophoresis of deoxyribonucleic acid (DNA) from PMD-1 and Sal+ exconjugants indicated that a plasmid (pMWD-1) of 110 megadaltons is correlated with the Sal+ phenotype; restriction enzyme analysis of DNA from Sal+ exconjugants indicated that plasmid pMWD-1 was transmitted intact. Enzyme analysis of Sal+ exconjugants demonstrated that the enzymes required to oxidize naphthalene to salicylate are absent, but salicylate hydroxylase and enzymes of the meta pathway are present. Thus, naphthalene conversion to salicylate requires chromosomal genes, whereas salicylate degradation is plasmid encoded. Comparison of restriction digests of plasmid pMWD-1 indicated that it differs considerably from the naphthalene and salicylate degradative plasmids previously described in P. putida.  相似文献   

11.
Pseudocumene (1,2,4-trimethylbenzene) and 3-ethyltoluene were found to serve as growth substrates for Pseudomonas putida (arvilla) mt-2, in addition to toluene, m-xylene, and p-xylene as previously described. Similar observations were made with several additional P. putida strains also capable of growth with toluene and the xylenes. Additional substrates which supported the growth of these organisms included 3,4-dimethylbenzyl alcohol, 3,4-dimethylbenzoate, and 3-ethylbenzoate. P. putida mt-2 cells grown either with toluene or pseudocumene rapidly oxidized toluene, pseudocumene, and 3-ethyltoluene as well as 3,4-dimethylbenzoate, 3-ethylbenzoate, 3,4-dimethylcatechol, and 3-ethylcatechol. Cell extracts from similarly grown P. putida mt-2 cells catalyzed a meta fission of 3,4-dimethylcatechol and 3-ethylcatechol to compounds having the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate and 2-hydroxy-6-ox-2,4-octadienoate, respectively. The further metabolism of these intermediates was shown to be independent of oxidized nicotinamide adenine dinucleotide (NAD+) and resulted in the formation of essentially equimolar amounts of pyruvate, indicating that each ring fission product was degraded via the hydrolytic branch of the meta fission pathway. Treatment of cells with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of a mutant, which when grown with succinate in the presence of pseudocumene or 3-ethyltoluene accumulated 3,4-dimethylcatechol or 3-ethylcatechol. Cells unable to utilize toluene, m-xylene, and p-xylene, obtained by growth in benzoate, also lost the ability to utilize pseudocumene and 3-ethyltoluene. The ability to utilize these substrates could be reacquired by incubation with a leucine auxotroph otherwise able to grow on all of the aromatic substrates.  相似文献   

12.
Pseudomonas putida MT20 carries a plasmid (TOL20) that codes for the enzymes responsible for the catabolism of toluene, m- and p-xylene to benzoate, and m- and p-toluate, respectively, followed by meta cleavage of the aromatic ring. Growth on 5 mM benzoate selects very strongly for (i) strains that have been cured of the plasmid and (ii) strains with an intermediate growth pattern (the B3 phenotype) that retain the ability to grow on toluene, m-xylene, and benzoate but are unable to grow on m-toluate. Both types of strains were selected because they are no longer able to oxidize benzoate by the plasmid pathway but instead use an alternative route, the ortho or β-ketoadipate pathway, which is chromosomally coded and supports faster growth. Evidence that one strain with the B3 phenotype, MT20-B3, has a regulatory mutation that prevents induction of the meta-pathway enzymes by benzoate and m-toluate, but which enables them to be induced by toluene and m-xylene, is presented. The plasmid in this strain, as in most of the others with the same phenotype, is nonconjugative. Analysis of MT20-B3, together with revertants of it and other noninducible mutants, has led to a model for the regulation of the plasmid-coded enzymes in MT20, in which it is proposed that the early enzymes for degradation of m-toluate and benzoate are positively controlled by two regulator molecules, one of which interacts with toluene and m-xylene as inducers and the other of which interacts with benzoate and m-toluate. It is argued that MT20-B3 and strains with a similar phenotype arose as a result of a deletion of the gene coding for the second regulator molecule.  相似文献   

13.
Pseudomonas putida strains with plasmids carrying pleiotropic alk mutations gave rise to alkane-positive "revertants," which differ from wild type. Some had restricted ability to utilize alkane and primary alcohol growth substrates, and others could grow on undecane and dodecanol, which are not utilized by alk+ strains. These revertants showed altered responses to normal inducers of alkA+, alkB+, and alkC+ activities. Some revertants were constitutive for these activities. Constitutive mutants could also be isolated directly from wild type, but they appeared spontaneously at a frequency of less than 2 X 10(-8). Regulatory mutations of all three types, pleiotropic negative, altered inducer specificity, and constitutive, were tightly linked in transduction crosses with a polar alkB mutation. These results demonstrate that the IncP-2 plasmid alk gene cluster constitutes a regulon. They also permit the identification of at least one cistron whose gene product participates in inducer recognition and suggest that the alkABC regulon is not under simple repressor control.  相似文献   

14.
15.
Pseudomonas putida NCIB 10015 metabolizes phenol and the cresols (methylphenols) by the meta pathway and metabolizes benzoate by the ortho pathway. Growth on catechol, an intermediate in the metabolism of both phenol and benzoate, induces both ortho and meta pathways; growth on 3- or 4-methylcatechols, intermediates in the metabolism of the cresols, induces only the meta pathway to a very limited degree. Addition of catechol at a growth-limiting rate induces virtually no meta pathway enzymes, but high levels of ortho pathway enzymes. The role of catechol and the methylcatechols as inducers is discussed. A method is described for assaying low levels of catechol 1,2-oxygenase in the presence of high levels of catechol 2,3-oxygenase and vice versa.  相似文献   

16.
Three Pseudomonas strains were tested for the ability to sense and respond to nitrobenzoate and aminobenzoate isomers in chemotaxis assays. Pseudomonas putida PRS2000, a strain that grows on benzoate and 4-hydroxybenzoate by using the beta-ketoadipate pathway, has a well-characterized beta-ketoadipate-inducible chemotactic response to aromatic acids. PRS2000 was chemotactic to 3- and 4-nitrobenzoate and all three isomers of aminobenzoate when grown under conditions that induce the benzoate chemotactic response. P. putida TW3 and Pseudomonas sp. strain 4NT grow on 4-nitrotoluene and 4-nitrobenzoate by using the ortho (beta-ketoadipate) and meta pathways, respectively, to complete the degradation of protocatechuate derived from 4-nitrotoluene and 4-nitrobenzoate. However, based on results of catechol 1,2-dioxygenase and catechol 2,3-dioxygenase assays, both strains were found to use the beta-ketoadipate pathway for the degradation of benzoate. Both strains were chemotactic to benzoate, 3- and 4-nitrobenzoate, and all three aminobenzoate isomers after growth with benzoate but not succinate. Strain TW3 was chemotactic to the same set of aromatic compounds after growth with 4-nitrotoluene or 4-nitrobenzoate. In contrast, strain 4NT did not respond to any aromatic acids when grown with 4-nitrotoluene or 4-nitrobenzoate, apparently because these substrates are not metabolized to the inducer (beta-ketoadipate) of the chemotaxis system. The results suggest that strains TW3 and 4NT have a beta-ketoadipate-inducible chemotaxis system that responds to a wide range of aromatic acids and is quite similar to that present in PRS2000. The broad specificity of this chemotaxis system works as an advantage in strains TW3 and 4NT because it functions to detect diverse carbon sources, including 4-nitrobenzoate.  相似文献   

17.
A number of mutants in which glucolysis is impaired have been isolated from Pseudomonas putida. The study of their behavior shows that this organism possesses a single glucolytic pathway with physiological significance. The first step of the pathway consists in the oxidation of glucose into gluconate. Two proteins with glucose dehydrogenase activity appear to exist in P. putida but the reasons for this duplicity are not clear. The process continues with the formation of 2-ketogluconate which is in turn converted into gluconate-6-phosphate. This is proved by the fact that mutants unable to form gluconate-6-phosphate from 2-ketogluconate show extremely slow growth on glucose or gluconate (generation times are increased more than 100 times). Other possible routes for the conversion of glucose into gluconate-6-phosphate, the glucose-6-phosphate pathway, or the direct phosphorylation of the gluconate formed by glucose oxidation are only minor shunts in P. putida. The Entner-Doudoroff enzymes, which catalyze the conversion of gluconate-6-phosphate into pyruvate and triosephosphate, appear to be essential to grow on glucose and also on gluconate and 2-ketogluconate. A significative role of the pentose route in the catabolism of these substrates is not apparent from this study. In contrast, P. putida strains showing no activity of the Entner-Doudoroff enzymes grow readily on fructose, although there is evidence that this hexose is at least partially catabolized via gluconate-6-phosphate.  相似文献   

18.
The isolation of several mutant strains blocked in l-lysine degradation has permitted an assessment of the physiological significance of enzymatic reactions related to lysine metabolism in Pseudomonas putida. Additional studies with intact cells involved labeling of metabolic intermediates from radioactive l- or d-lysine, and patterns of enzyme induction in both wild-type and mutant strains. These studies lead to the conclusions that from l-lysine, the obligatory pathway is via delta-aminovaleramide, delta-aminovalerate, glutaric semialdehyde, and glutarate, and that no alternative pathways from l-lysine exist in our strain. A distinct pathway from d-lysine proceeds via Delta(1)-piperideine-2-carboxylate, l-pipecolate, and Delta(1)-piperideine-6-carboxylate (alpha-aminoadipic semialdehyde). The two pathways are independent in the sense that certain mutants, unable to grow on l-lysine, grow at wild-type rates of d-lysine, utilizing the same intermediates as the wild type, as inferred from labeling studies. This finding implies that lysine racemase in our strain, while detectable in cell extracts, is not physiologically functional in intact cells at a rate that would permit growth of mutants blocked in the l-lysine pathway. Pipecolate oxidase, a d-lysine-related enzyme, is induced by d-lysine and less efficiently by l-lysine. Aminooxyacetate virtually abolishes the inducing activity of l-lysine for this enzyme, suggesting that lysine racemase, although functionally inactive for growth purposes, may still have regulatory significance in permitting cross-induction of d-lysine-related enzymes by l-lysine, and vice versa. This finding suggests a mechanism in bacteria for maintaining regulatory patterns in pathways that may have lost their capacity to support growth. In addition, enzymatic studies are reported which implicate Delta(1)-piperideine-2-carboxylate reductase as an early step in the d-lysine pathway.  相似文献   

19.
The meta-cleavage operon of the TOL plasmid pWW0 of Pseudomonas putida contains 13 genes responsible for the oxidation of benzoate and toluates to Krebs cycle intermediates via estradiol (meta) cleavage of (methyl)catechol. The functions of all the genes are known with the exception of xylT. We constructed pWW0 mutants defective in the xylT gene, and found that these mutants were not able to grow on p-toluate while they were still capable of growing on benzoate and m-toluate. In the xylT mutants, all the meta-cleavage enzymes were induced by p-toluate with the exception of catechol 2,3-dioxygenase whose activity was 1% of the p-toluate-induced activity in wild-type cells. Addition of 4-methylcatechol to m-toluate-grown wild-type and xylT cells resulted in the inactivation of catechol 2,3-dioxygenase in these cells. In the wild-type strain but not in the xylT mutant, the catechol 2,3-dioxygenase activity was regenerated in a short time. The regeneration of the catechol 2,3-dioxygenase activity was also observed in H2O2-treated wild-type cells, but not in H2O2-treated xylT cells. We concluded that the xylT product is required for the regeneration of catechol 2,3-dioxygenase.  相似文献   

20.
Pseudomonas putida P111 is able to utilize a broad range of monochlorinated, dichlorinated, and trichlorinated benzoates. The involvement of two separate dioxygenases was noted from data on plasmid profiles and DNA hybridization. The benzoate dioxygenase, which converts 3-chlorobenzoate (3-CB), 4-CB, and benzoate to the corresponding catechols via reduction of a dihydrodiol, was shown to be chromosomally coded. The chlorobenzoate-1,2-dioxygenase that converts ortho-chlorobenzoates to the corresponding catechols without the need of a functional dioldehydrogenase was shown to be encoded on plasmid pPB111 (75 kb). Cured strains were unable to utilize ortho-chlorobenzoates for growth. DNA hybridization data indicated that catabolism of the corresponding chlorocatechols was coded on chromosomal genes. Maintenance of plasmid pPB111 was dependent on the presence of ortho-chlorobenzoates in the growth media. A unique variant of P111 (P111D), able to grow on 3,5-dichlorobenzoate (3,5-DCB), was obtained by continuous subculturing from media containing progressively lower and higher concentrations of 3-CB and 3,5-DCB, respectively. The low frequency of segregants able to grow on 2,5-DCB, 2,3-DCB, and 2,3, 5-trichlorobenzoate was evident by lag periods greater than 200 h. Continued subculture on 3,5-DCB resulted in the formation of new plasmid pPH111 (120 kb), which was homologous to pPB111. A probe from the clc operon, which encodes for the chlorocatechol pathway, hybridized to plasmid pPH111 and to the chromosome of the wild-type strain P111 but not to its plasmid pPB111 nor to the chromosome of strain P111A, which had lost the ability to utilize chlorobenzoates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号