首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human Rad51 protein is essential for DNA repair by homologous recombination. In addition to Rad51 protein, five paralogs have been identified: Rad51B/Rad51L1, Rad51C/Rad51L2, Rad51D/Rad51L3, XRCC2, and XRCC3. To further characterize a subset of these proteins, recombinant Rad51, Rad51B-(His)(6), and Rad51C proteins were individually expressed employing the baculovirus system, and each was purified from Sf9 insect cells. Evidence from nickel-nitrilotriacetic acid pull-down experiments demonstrates a highly stable Rad51B.Rad51C heterodimer, which interacts weakly with Rad51. Rad51B and Rad51C proteins were found to bind single- and double-stranded DNA and to preferentially bind 3'-end-tailed double-stranded DNA. The ability to bind DNA was elevated with mixed Rad51 and Rad51C, as well as with mixed Rad51B and Rad51C, compared with that of the individual protein. In addition, both Rad51B and Rad51C exhibit DNA-stimulated ATPase activity. Rad51C displays an ATP-independent apparent DNA strand exchange activity, whereas Rad51B shows no such activity; this apparent strand exchange ability results actually from a duplex DNA destabilization capability of Rad51C. By analogy to the yeast Rad55 and Rad57, our results suggest that Rad51B and Rad51C function through interactions with the human Rad51 recombinase and play a crucial role in the homologous recombinational repair pathway.  相似文献   

2.
Human Rad51 (hRad51) and Rad54 proteins are key members of the RAD52 group required for homologous recombination. We show an ability of hRad54 to promote transient separation of the strands in duplex DNA via its ATP hydrolysis-driven DNA supercoiling function. The ATPase, DNA supercoiling, and DNA strand opening activities of hRad54 are greatly stimulated through an interaction with hRad51. Importantly, we demonstrate that hRad51 and hRad54 functionally cooperate in the homologous DNA pairing reaction that forms recombination DNA intermediates. Our results should provide a biochemical model for dissecting the role of hRad51 and hRad54 in recombination reactions in human cells.  相似文献   

3.
Yeast Rad51 promotes homologous pairing and strand exchange in vitro, but this activity is inefficient in the absence of the accessory proteins, RPA, Rad52, Rad54 and the Rad55-Rad57 heterodimer. A class of rad51 alleles was isolated that suppresses the requirement for RAD55 and RAD57 in DNA repair, but not the other accessory factors. Five of the six mutations isolated map to the region of Rad51 that by modeling with RecA corresponds to one of the DNA-binding sites. The other mutation is in the N-terminus of Rad51 in a domain implicated in protein-protein interactions and DNA binding. The Rad51-I345T mutant protein shows increased binding to single- and double-stranded DNA, and is proficient in displacement of replication protein A (RPA) from single-stranded DNA, suggesting that the normal function of Rad55-Rad57 is promotion and stabilization of Rad51-ssDNA complexes.  相似文献   

4.
5.
Endoplasmic reticulum (ER) stress is caused by the accumulation of misfolded or unfolded proteins in the lumen of the endoplasmic reticulum. CCAAT/enhancer binding proteins are one of the cellular proteins whose expression is upregulated during ER stress. Previously, we have identified C/EBPbeta isoforms, especially LIP, as a negative regulator of polyomavirus JC (JCV), the causative agent of the demyelinating disease progressive multifocal leukoencephalopathy (PML). Here, we show that the induction of ER stress by thapsigargin increase the expression of endogenous LIP and the degradation of JCV T-antigen in a JCV-transgenic mouse tumor cell line. Our results also revealed that overexpression of LIP significantly reduced the level of T-Ag and this effect is reversed upon siRNA-mediated silencing of LIP. Immunoprecipitation/Western blot experiments indicated that LIP interacts with T-antigen directly. Treatment of cells that overexpress LIP with MG115, a proteasome inhibitor, partially rescued LIP-mediated degradation of T-antigen. Our observations point to a role of LIP in ER stress regulation of T-antigen stability and may open a new avenue to study host-virus interaction during ER stress.  相似文献   

6.
In medulloblastomas, which are highly malignant cerebellar tumors of the childhood genotoxic treatments such as cisplatin or γ‐irradiation are frequently associated with DNA damage, which often associates with unfaithful DNA repair, selection of new adaptations and possibly tumor recurrences. Therefore, better understanding of molecular mechanisms which control DNA repair fidelity upon DNA damage is a critical task. Here we demonstrate for the first time that estrogen receptor beta (ERβ) can contribute to the development of genomic instability in medulloblastomas. Specifically, ERβ was found highly expressed and active in mouse and human medulloblastoma cell lines. Nuclear ERβ was also present in human medulloblastoma clinical samples. Expression of ERβ coincided with nuclear translocation of insulin receptor substrate 1 (IRS‐1), which was previously reported to interfere with the faithful component of DNA repair when translocated to the nucleus. We demonstrated that ERβ and IRS‐1 bind each other, and the interaction involves C‐terminal domain of IRS‐1 (aa 931–1233). Following cisplatin‐induced DNA damage, nuclear IRS‐1 localized at the sites of damaged DNA, and interacted with Rad51—an enzymatic component of homologous recombination directed DNA repair (HRR). In medulloblastoma cells, engineered to express HRR‐DNA reporter plasmid, ER antagonist, ICI 182,780, or IRS mutant (931–1233) significantly increased DNA repair fidelity. These data strongly suggest that both molecular and pharmacological interventions are capable of preventing ERβ‐mediated IRS‐1 nuclear translocation, which in turn improves DNA repair fidelity and possibly counteracts accumulation of malignant mutations in actively growing medulloblastomas. J. Cell. Physiol. 219: 392–401, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
Replication protein A (RPA) is displaced from single-stranded DNA (ssDNA) by Rad51 during the initiation of homologous recombination. Interactions between these proteins have been reported, but the functional significance of the direct RPA-Rad51 interaction has yet to be elucidated. We have identified and characterized the interaction between DNA-binding domain A of RPA (RPA70A) and the N-terminal domain of Rad51 (Rad51N). NMR chemical shift mapping showed that Rad51N binds to the ssDNA-binding site of RPA70A, suggesting a competitive mechanism for the displacement of RPA from ssDNA by Rad51. A structure of the RPA70A-Rad51N complex was generated by experimentally guided modeling and then used to design mutations that disrupt the binding interface. Functional ATP hydrolysis assays were performed for wild-type Rad51 and a mutant defective in binding RPA. Rates of RPA displacement for the mutant were significantly below those of wild-type Rad51, suggesting that a direct RPA-Rad51 interaction is involved in displacing RPA in the initiation stage of genetic recombination.  相似文献   

8.
Insulin receptor substrate 1 (IRS-1) is the major signaling molecule for the insulin and insulin-like growth factor I receptors, which transduces both metabolic and growth-promoting signals, and has transforming properties when overexpressed in the cells. Here we show that IRS-1 is translocated to the nucleus in the presence of the early viral protein-T-antigen of the human polyomavirus JC. Nuclear IRS-1 was detected in T-antigen-positive cell lines and in T-antigen-positive biopsies from patients diagnosed with medulloblastoma. The IRS-1 domain responsible for a direct JC virus T-antigen binding was localized within the N-terminal portion of IRS-1 molecule, and the binding was independent from IRS-1 tyrosine phosphorylation and was strongly inhibited by IRS-1 serine phosphorylation. In addition, competition for the IRS-1-T-antigen binding by a dominant negative mutant of IRS-1 inhibited growth and survival of JC virus T-antigen-transformed cells in anchorage-independent culture conditions. Based on these findings, we propose a novel role for the IRS-1-T-antigen complex in controlling cellular equilibrium during viral infection. It may involve uncoupling of IRS-1 from its surface receptor and translocation of its function to the nucleus.  相似文献   

9.
DNA double-strand breaks (DSBs) are highly cytotoxic lesions and pose a major threat to genome stability if not properly repaired. We and others have previously shown that a class of DSB-induced small RNAs (diRNAs) is produced from sequences around DSB sites. DiRNAs are associated with Argonaute (Ago) proteins and play an important role in DSB repair, though the mechanism through which they act remains unclear. Here, we report that the role of diRNAs in DSB repair is restricted to repair by homologous recombination (HR) and that it specifically relies on the effector protein Ago2 in mammalian cells. Interestingly, we show that Ago2 forms a complex with Rad51 and that the interaction is enhanced in cells treated with ionizing radiation. We demonstrate that Rad51 accumulation at DSB sites and HR repair depend on catalytic activity and small RNA-binding capability of Ago2. In contrast, DSB resection as well as RPA and Mre11 loading is unaffected by Ago2 or Dicer depletion, suggesting that Ago2 very likely functions directly in mediating Rad51 accumulation at DSBs. Taken together, our findings suggest that guided by diRNAs, Ago2 can promote Rad51 recruitment and/or retention at DSBs to facilitate repair by HR.  相似文献   

10.
The DNA double-strand breaks are particularly deleterious, especially when an error-free repair pathway is unavailable, enforcing the error-prone recombination pathways to repair the lesion. Cells can resume the cell cycle but at the expense of decreased viability due to genome rearrangements. One of the major players involved in recombinational repair of DNA damage is Rad51 recombinase, a protein responsible for presynaptic complex formation. We previously showed that an increased level of this protein promotes the usage of illegitimate recombination. Here we show that the level of Rad51 is regulated via the ubiquitin-dependent proteolytic pathway. The ubiquitination of Rad51 depends on multiple E3 enzymes, including SUMO-targeted ubiquitin ligases. We also demonstrate that Rad51 can be modified by both ubiquitin and SUMO. Moreover, its modification with ubiquitin may lead to opposite effects: degradation dependent on Rad6, Rad18, Slx8, Dia2, and the anaphase-promoting complex, or stabilization dependent on Rsp5. We also show that post-translational modifications with SUMO and ubiquitin affect Rad51's ability to form and disassemble DNA repair foci, respectively, influencing cell cycle progression and cell viability in genotoxic stress conditions. Our data suggest the existence of a complex E3 ligases network that regulates Rad51 recombinase's turnover, its molecular activity, and access to DNA, limiting it to the proportions optimal for the actual cell cycle stage and growth conditions, e.g., stress. Dysregulation of this network would result in a drop in cell viability due to uncontrolled genome rearrangement in the yeast cells. In mammals would promote the development of genetic diseases and cancer.  相似文献   

11.
We have initiated a study to identify host proteins which interact with the regulatory region of the human polyomavirus JC (JCV), which is associated with the demyelinating disease, progressive multifocal leukoencephalopathy. We examined the interaction of nuclear proteins prepared from different cell lines with the JCV regulatory region by DNA binding gel retardation assays. Binding was detected with nuclear extracts prepared from human fetal glial cells, glioma cells, and HeLa cells. Little or no binding was detected with nuclear extracts prepared from human embryonic kidney cells. Competitive binding assays suggest that the nuclear factor(s) which interacted with the JCV regulatory region was different from those which interacted with the regulatory region of the closely related polyomavirus SV40. We found three areas in the JCV regulatory region protected from DNase I digestion: site A, located just upstream from the TATA sequence in the first 98-base pair (bp) repeat; site B, located upstream from the TATA sequence in the second 98-bp repeat; and site C, located just following the second 98-bp repeat. There were some differences in the ability of the nuclear factor(s) from the two brain cell lines and HeLa cells to completely protect the nucleotides within the footprint region. The results from the DNase I protective studies and competitive DNA binding studies with specific oligonucleotides, suggest that nuclear factor-1 or a nuclear factor-1-like factor is interacting with all three sites in the JCV regulatory region. In addition, the results suggest that the nuclear factor which interacts with the JCV regulatory region from human brain cell lines is different from the factor found in HeLa cells.  相似文献   

12.
In addition to the recombinase Rad51, vertebrates have five paralogs of Rad51, all members of the Rad51-dependent recombination pathway. These paralogs form two complexes (Rad51C/Xrcc3 and Rad51B/C/D/Xrcc2), which play roles in somatic recombination, DNA repair and chromosome stability. However, little is known of their possible involvement in meiosis, due to the inviability of the corresponding knockout mice. We have recently reported that the Arabidopsis homolog of one of these Rad51 paralogs (AtXrcc3) is involved in DNA repair and meiotic recombination and present here Arabidopsis lines carrying mutations in three other Rad51 paralogs (AtRad51B, AtRad51C and AtXrcc2). Disruption of any one of these paralogs confers hypersensitivity to the DNA cross-linking agent Mitomycin C, but not to gamma-irradiation. Moreover, the atrad51c-1 mutant is the only one of these to show meiotic defects similar to those of the atxrcc3 mutant, and thus only the Rad51C/Xrcc3 complex is required to achieve meiosis. These results support conservation of functions of the Rad51 paralogs between vertebrates and plants and differing requirements for the Rad51 paralogs in meiosis and DNA repair.  相似文献   

13.
The human Rad51 protein, a eukaryotic ortholog of the bacterial RecA protein, is a key enzyme that functions in homologous recombination and recombinational repair of double strand breaks. The Rad51 protein contains two flexible loops, L1 and L2, which are proposed to be sites for DNA binding, based on a structural comparison with RecA. In the present study, we performed mutational and fluorescent spectroscopic analyses on the L1 and L2 loops to examine their role in DNA binding. Gel retardation and DNA-dependent ATP hydrolysis measurements revealed that the substitution of the tyrosine residue at position 232 (Tyr232) within the L1 loop with alanine, a short side chain amino acid, significantly decreased the DNA-binding ability of human Rad51, without affecting the protein folding or the salt-induced, DNA-independent ATP hydrolysis. Even the conservative replacement with tryptophan affected the DNA binding, indicating that Tyr232 is involved in DNA binding. The importance of the L1 loop was confirmed by the fluorescence change of a tryptophan residue, replacing the Asp231, Ser233, or Gly236 residue, upon DNA binding. The alanine replacement of phenylalanine at position 279 (Phe279) within the L2 loop did not affect the DNA-binding ability of human Rad51, unlike the Phe203 mutation of the RecA L2 loop. The Phe279 side chain may not be directly involved in the interaction with DNA. However, the fluorescence intensity of the tryptophan replacing the Rad51-Phe279 residue was strongly reduced upon DNA binding, indicating that the L2 loop is also close to the DNA-binding site.  相似文献   

14.
The Rad51B, Rad51C, Rad51D and Xrcc2 proteins are Rad51 paralogs, and form a complex (BCDX2 complex) in mammalian cells. Mutant cells defective in any one of the Rad51-paralog genes exhibit spontaneous genomic instability and extreme sensitivity to DNA-damaging agents, due to inefficient recombinational repair. Therefore, the Rad51 paralogs play important roles in the maintenance of genomic integrity through recombinational repair. In the present study, we examined the DNA-binding preference of the human BCDX2 complex. Competitive DNA-binding assays using seven types of DNA substrates, single-stranded DNA (ssDNA), double-stranded DNA, 5′- and 3′-tailed duplexes, nicked duplex DNA, Y-shaped DNA and a synthetic Holliday junction, revealed that the BCDX2 complex preferentially bound to the two DNA substrates with branched structures (the Y-shaped DNA and the synthetic Holliday junction). Furthermore, the BCDX2 complex catalyzed the strand-annealing reaction between a long linear ssDNA (1.2 kb in length) and its complementary circular ssDNA. These properties of the BCDX2 complex may be important for its roles in the maintenance of chromosomal integrity.  相似文献   

15.
Rad51 is the core component of the eukaryotic homologous recombination machinery and assembles into extended nucleoprotein filaments on DNA. To study the dynamic behavior of Rad51 we have developed a single-molecule assay that relies on a combination of hydrodynamic force and microscale diffusion barriers to align individual DNA molecules on the surface of a microfluidic sample chamber that is coated with a lipid bilayer. When visualized with total internal reflection fluorescence microscopy (TIRFM), these "molecular curtains" allow for the direct visualization of hundreds of individual DNA molecules. Using this approach, we have analyzed the binding of human Rad51 to single molecules of double-stranded DNA under a variety of different reaction conditions by monitoring the extension of the fluorescently labeled DNA, which coincides with assembly of the nucleoprotein filament. We have also generated several mutants in conserved regions of Rad51 implicated in DNA binding, and tested them for their ability to assemble into extended filaments. We show that proteins with mutations within the DNA-binding surface located on the N-terminal domain still retain the ability to form extended nucleoprotein filaments. Mutations in the L1 loop, which projects towards the central axis of the filament, completely abolish assembly of extended filaments. In contrast, most mutations within or near the L2 DNA-binding loop, which is also located near the central axis of the filament, do not affect the ability of the protein to assemble into extended filaments on double-stranded (ds)DNA. Taken together, these results demonstrate that the L1-loop plays a crucial role in the assembly of extended nucleoprotein filaments on dsDNA, but the N-terminal domain and the L2 DNA-binding loop have significantly less impact on this process. The results presented here also provide an important initial framework for beginning to study the biochemical behaviors of Rad51 nucleoprotein filaments using our novel experimental system.  相似文献   

16.
Basis for avid homologous DNA strand exchange by human Rad51 and RPA   总被引:1,自引:0,他引:1  
Human Rad51 (hRad51), a member of a conserved family of general recombinases, is shown here to have an avid capability to make DNA joints between homologous DNA molecules and promote highly efficient DNA strand exchange of the paired molecules over at least 5.4 kilobase pairs. Furthermore, maximal efficiency of homologous DNA pairing and strand exchange is strongly dependent on the heterotrimeric single-stranded DNA binding factor hRPA and requires conditions that lessen interactions of the homologous duplex with the hRad51-single-stranded DNA nucleoprotein filament. The homologous DNA pairing and strand exchange system described should be valuable for dissecting the action mechanism of hRad51 and for deciphering its functional interactions with other recombination factors.  相似文献   

17.
Human Rad51 (HsRad51), a key element of the homologous recombination repair pathway, is related to the resistance of cancer cells to chemo- and radio-therapies. This protein is thus a good target for the development of anti-cancer treatments. We have searched for new inhibitors directed against HsRad51 using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach. We have selected three aptamers displaying strong effects on strand exchange activity. Analysis by circular dichroism shows that they are highly structured DNA molecules. Our results also show that they affect the first step of the strand exchange reaction by promoting the dissociation of DNA from the ATP/HsRad51/DNA complex. Moreover, these inhibitors bind only weakly to RecA, a prokaryotic ortholog of HsRad51. Both the specificity and the efficiency of their inhibition of recombinase activity offer an analytical tool based on molecular recognition and the prospect of developing new therapeutic agents.  相似文献   

18.
19.
The human Rad51 recombinase is essential for the repair of double-strand breaks in DNA that occur in somatic cells after exposure to ionising irradiation, or in germ line cells undergoing meiotic recombination. The initiation of double-strand break repair is thought to involve resection of the double-strand break to produce 3'-ended single-stranded (ss) tails that invade homologous duplex DNA. Here, we have used purified proteins to set up a defined in vitro system for the initial strand invasion step of double-strand break repair. We show that (i) hRad51 binds to the ssDNA of tailed duplex DNA molecules, and (ii) hRad51 catalyses the invasion of tailed duplex DNA into homologous covalently closed DNA. Invasion is stimulated by the single-strand DNA binding protein RPA, and by the hRad52 protein. Strikingly, hRad51 forms terminal nucleoprotein filaments on either 3' or 5'-ssDNA tails and promotes strand invasion without regard for the polarity of the tail. Taken together, these results show that hRad51 is recruited to regions of ssDNA occurring at resected double-strand breaks, and that hRad51 shows no intrinsic polarity preference at the strand invasion step that initiates double-strand break repair.  相似文献   

20.
In budding yeast most Rad51-dependent and -independent recombination depends on Rad52. In contrast, its homologue in fission yeast, Rad22, was assumed to play a less critical role possibly due to functional redundancy with another Rad52-like protein Rti1. We show here that this is not the case. Rad22 like Rad52 plays a central role in recombination being required for both Rhp51-dependent and -independent events. Having established this we proceed to investigate the involvement of the Mus81–Eme1 endonuclease in these pathways. Mus81 plays a relatively minor role in the Rhp51-dependent repair of DNA damage induced by ultraviolet light. In contrast Mus81 has a key role in the Rad22-dependent (Rhp51-independent) repair of damage induced by camptothecin, hydroxyurea and methyl-methanesulfonate. Furthermore, spontaneous intrachromosomal recombination that gives rise to deletion recombinants is impaired in a mus81 mutant. From these data we propose that a Rad22–Mus81-dependent (Rhp51-independent) pathway is an important mechanism for the repair of DNA damage in fission yeast. Consistent with this we show that in vitro Rad22 can promote strand invasion to form a D-loop that can be cleaved by Mus81.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号