首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
New water-soluble conjugates in the form of Schiff bases (DGM-1 and DGM-2) were prepared by the interaction of water-soluble periodate-oxidized galactomannan with doxorubicin or N-(L-lysyl)doxorubicin, respectively. The water-soluble galactomannan (DAVANAT®, a commercial product of Pro-Pharmaceuticals company) was obtained by partial acidic hydrolysis of high-molecular-mass galactomannan from Cyamopsis tetragonoloba (guar gum) seeds. The conjugate stability was studied in aqueous solutions. The DGM-1 anti-proliferative activity was comparable with that of doxorubicin on three models: cell lines of murine melanoma B16-F1 and human breast cancer MCF-7 (HTB-22) and human colon cancer HT-29 (HTB-38). DGM-2 was poorly active in all the three tests. DGM-1 can thus be regarded as a high-molecular-mass depot form of doxorubicin.  相似文献   

2.
The nuclear factor-E2-related factor 2 (NRF2) serves as a master regulator in cellular defense against oxidative stress and chemical detoxification. However, persistent activation of NRF2 resulting from mutations in NRF2 and/or downregulation of or mutations in its suppressor, Kelch-like ECH-associated protein 1 (KEAP1), is associated with tumorigenicity and chemoresistance of non-small-cell lung carcinomas (NSCLCs). Thus, inhibiting the NRF2-mediated adaptive antioxidant response is widely considered a promising strategy to prevent tumor growth and reverse chemoresistance in NSCLCs. Unexpectedly, stable knockdown of KEAP1 by lentiviral shRNA sensitized three independent NSCLC cell lines (A549, HTB-178, and HTB-182) to multiple chemotherapeutic agents, including arsenic trioxide (As(2)O(3)), etoposide, and doxorubicin, despite moderately increased NRF2 levels. In lung adenocarcinoma epithelial A549 cells, silencing of KEAP1 augmented the expression of peroxisome proliferator-activated receptor γ (PPARγ) and genes associated with cell differentiation, including E-cadherin and gelsolin. In addition, KEAP1-knockdown A549 cells displayed attenuated expression of the proto-oncogene cyclin D1 and markers for cancer stem cells (CSCs) and reduced nonadherent sphere formation. Moreover, deficiency of KEAP1 led to elevated induction of PPARγ in response to As(2)O(3). Pretreatment of A549 cells with PPARγ agonists activated PPARγ and augmented the cytotoxicity of As(2)O(3). A mathematical model was formulated to advance a hypothesis that differential regulation of PPARγ and detoxification enzymes by KEAP1 and NRF2 may underpin the observed landscape changes in chemosensitivity. Collectively, suppression of KEAP1 expression in human NSCLC cells resulted in sensitization to chemotherapeutic agents, which may be attributed to activation of PPARγ and subsequent alterations in cell differentiation and CSC abundance.  相似文献   

3.
Neutrophils were intra-cellularly “loaded” with the chemotherapeutic agent, doxorubicin applying a variety of incubation conditions in order to identify parameters which maximize chemotherapeutic incorporation, while simultaneously preserving optimal viability and chemotactic responsiveness. Doxorubicin “loaded” neutrophils (DLN) were produced in triplicate at different combinations of incubation conditions such as temperature (4° C, 37° C); duration (0, 1, 2 hours); and doxorubicin concentration (20, 40, 60μg/ml). Chemotactic responsiveness of rinsed DLN preparations was subsequently assessed against the neutrophil peptide chemotactic agent, formyl methionyl leucyl phenylalanine (fMLP, 10−6 M) utilizing a modified 96-well Boyden chemotactic chamber apparatus. Viable, fMLP-responsive DLN preparations were subsequently detected with MTT vitality staining reagent. At sub-physiological incubation temperatures (4° C), profound declines in the viability of DLN preparations were detected when simultaneously incubated with doxorubicin formulated at concentrations greater than 10μg/ml. In contrast, DLN preparations incubated at 37° C displayed diminished viability only when incubated with doxorubicin formulated at a concentration of 60μg/ml. Viable DLN populations were subsequently evaluated to determine their ability to exertin vitro cytotoxic activity against monolayer populations of human mammary carcinoma (HTB-19) propagated in a tissue culture environment. The lethal effect which DLN preparations inflicted towards HTB-19 populations was substantially greater than was observed with an equivalent population of untreated neutrophils. Maximalin vitro cytotoxic activity was detected with DLN preparations produced at 37° C in the presence of doxorubicin formulated at a concentration of 40μg/ml. In contrast, DLN preparations produced at an incubation temperature of 37° C, and a doxorubicin concentration of 20μg/ml displayed relatively lower levels ofin vitro cytotoxic activity against HTB-19 monolayer populations. The degree ofin vitro cytotoxic activity exerted against HTB-19 monolayer populations by DLN preparations was directly influenced by the duration of the challenge period. Maximalin vitro cytotoxic activity was observed when HTB-19 monolayer populations were challenged with DLN preparations for a period of 96-hours duration at 37° C. Challenge periods of 48-hours duration produced levels ofin vitro cytotoxic activity which were substantially lower than those observed for challenge periods of 96-hours duration. Optimalin vitro cytotoxic activity was recognized when DLN preparations were allowed to establish direct contact with HTB-19 monolayer populations at an estimated DLN:HTB-19 cellular ratio of approximately 5:1 (37° C, CO2, 6%). Significantly lessin vitro cytotoxic activity was recognized when DLN preparations were only permitted indirect cellular contact with HTB-19 monolayer populations which was achieved through the application of a semi-permeable 3μM pore membrane partition. In vitro cytotoxic activity of DLN populations was not inhibited by the anti-oxidant agent, dimethyl sulfoxide (DMSO), but was inhibited in the presence of glutathione (GSH), superoxide dismutase (SOD), and vitamin E (α-tocopherol). Similarly,in vitro cytotoxic activity of DLN populations was also inhibited in the presence of sodium heparin (serine esterase inhibitor), and dexamethasone (inhibitor of neutrophil activation-degranulation phenomenon). Experimental results observed in these investigations collectively imply that thein vitro cytotoxic activity exerted by DLN preparations against HTB-19 populations is in part attributable to neutrophil-mediated cytotoxic immunity. This innate property of neutrophil populations involves their capacity to generate highly reactive oxygen “free” radical species (O2, HO, H2O2), and synthesize degradative proteolytic enzyme fractions. These endogenous substances are intimately involved in the processes of neutrophil-mediated cytotoxic immunity when “released” into the extracellular milieu and may potentially act in concert with the anti-neoplastic properties of chemotherapeutic agents such as doxorubicin.  相似文献   

4.
The aim of this study was to compare the potential of two plant lectins [peanut agglutinin (PNA) and wheat germ agglutinin (WGA)], monoclonal antibody (anti-Thy-1.2), its F(ab')(2) fragments, and galactosamine as targeting moieties bound to the polymer drug carrier to deliver a xenobiotic, doxorubicin, to selected cancer cell lines. We have used primary (SW 480, HT 29) and metastatic (SW 620) human colorectal cancer cell lines and a transfectant, genetically engineered SW 620 cell line with mouse gene Thy-1.2 (SW 620/T) to test the possibility of marking human cancer with xenogeneic mouse gene and use it for effective site-specific targeting. The targeting moieties and doxorubicin were conjugated to a water-soluble copolymer based on N-(2-hydroxypropyl)methacrylamide (HPMA) acting as a carrier responsible for controlled intracellular release of the targeted drug. FACS analysis showed a strong binding of WGA-FITC to all tested cell lines. Binding of PNA-FITC was considerably weaker. The in vitro antiproliferative effect of lectin-targeted HPMA carrier-bound doxorubicin evaluated as [(3)H]TdR incorporation reflected both the intensity of the binding and the different sensitivity of the tested cancer cells lines to doxorubicin. The antiproliferative effect of conjugates targeted with WGA was comparable to that with the conjugates targeted with the anti-Thy-1.2 monoclonal antibody or their F(ab')(2) fragments. The magnitude of the cytotoxic effect of HPMA-doxorubicin targeted with PNA was lower in all tested cell lines. While the conjugates with WGA were more cytotoxic, the conjugates with PNA were more specific as their binding is limited to cancer cells and to the sites of inflammation. Noncytotoxic conjugates with a very low concentration of doxorubicin and targeted with PNA, anti-Thy-1.2, or their F(ab')(2) fragments exerted in some lines (SW 480, SW 620) low mitogenic activity. The Thy-1.2 gene-transfected SW 620 metastatic colorectal cancer cell line was sensitive to the antiproliferative effect of Thy-1.2-targeted doxorubicin as was shown for the Thy-1. 2(+) EL4 cell line and for Thy-1.2(+) concanavalin A-stimulated mouse T lymphocytes. These results represent the first indication of the suitability of transfection of human cancer cells with selected targeting genes for site-specific therapy of malignancies.  相似文献   

5.
Tobacco smoking is one of the major risk factors in pathogenesis of head and neck squamous cell carcinomas (HNSCC). Many of the chemical compounds present in tobacco are well-known carcinogens which form adducts with DNA. Cells remove these adducts mainly by the nucleotide excision repair pathway (NER). NER also eliminates a broad spectrum of pyrimidine dimers (CPD) and photo-products (6-4PP) induced by UV-radiation or DNA cross-links after cisplatin anti-cancer treatment. In this study DNA damage and repair was examined in peripheral blood lymphocytes obtained from 20 HNSCC patients and 20 healthy controls as well as HTB-43 larynx and SSC-25 tongue cancer cell lines. DNA repair kinetics in the examined cells after cisplatin or UV-radiation treatment were investigated using alkaline comet assay during 240min of post-treatment incubation. MTT assay was used to analyse cell viability and the Annexin V-FITC kit specific for kinase-3 was employed to determine apoptosis after treating the cells with UV-radiation at dose range from 0.5 to 60J/m(2). NER capability was assessed in vitro with cell extracts by the use of a bacterial plasmid irradiated with UV-light as a substrate for the repair. The results show that lymphocytes from HNSCC patients and HTB-43 or SSC-25 cancer cells were more sensitive to genotoxic treatment with UV-radiation and displayed impaired DNA repair. Also evidenced was a higher rate of apoptosis induction after UV-radiation treatment of lymphocytes from the HNSCC patients and the HTB-43 cancer cells than after treatment of those from healthy donors. Finally, our results showed that there was a significant decrease in NER capacity in HTB-43 or SSC-25 cancer cells as well as in peripheral blood lymphocytes of HNSCC patients compared to controls. In conclusion, we suggest that the impaired NER pathway might be a critical factor in pathogenesis of head and neck cancer.  相似文献   

6.
We have recently validated a macromolecular prodrug strategy for improved cancer chemotherapy based on two features: (a) rapid and selective binding of thiol-reactive prodrugs to the cysteine-34 position of endogenous albumin and (b) acid-sensitive promoted or enzymatic release of the drug at the tumor site [Kratz, F., Warnecke, A., Scheuemann, K., Stockmar, C., Schwab, J., Lazar, P., Druckes, P., Esser, N., Drevs, J., Rognan, D., Bissantz, C., Hinderling, C., Folkers, G., Fichtner, I., and Unger, C. (2002) J. Med. Chem. 45, 5523-33]. In the present work, we developed water-soluble camptothecin (CPT) and doxorubicin (DOXO) prodrugs that incorporate the peptide linker Ala-Leu-Ala-Leu that serves as a substrate for the tumor-associated protease, cathepsin B, which is overexpressed in several solid tumors. Consequently, two albumin-binding prodrugs were synthesized [EMC-Arg-Arg-Ala-Leu-Ala-Leu-Ala-CPT (1) and EMC-Arg-Arg-Ala-Leu-Ala-Leu-DOXO (2) (EMC = 6-maleimidocaproic acid)]. Both prodrugs exhibited excellent water-solubility and bound rapidly and selectively to the cysteine-34 position of endogenous albumin. Further in vitro studies showed that the albumin-bound form of the prodrugs was cleaved specifically by cathepsin B as well as in human tumor homogenates. Major cleavage products were CPT-peptide derivatives and CPT for the CPT prodrug and H-Leu-Ala-Leu-DOXO, H-Leu-DOXO, and DOXO for the doxorubicin prodrug. In vivo, 1 was superior to free camptothecin in an HT-29 human colon xenograft model; the antitumor efficacy of prodrug 2 was comparable to that of free doxorubicin in the M-3366 mamma carcinoma xenograft model at equimolar doses.  相似文献   

7.
Human genomic DNA and the HSV tk gene were cotransfected into mouse Ltk- cells and assayed for the acquisition of a Gs-coupled receptor to obtain cell lines expressing human receptors that are so far unavailable. The transfected cells were distributed into 96-well microtitration plates at a density such that after HAT (100 microM hypoxanthine, 1 microM aminopterin, and 10 microM thymidine) selection each well contained, on the average, two to three tk+ cell clones. After replication, half of them were tested for expression of a new phenotype: an adenylyl cyclase stimulatory receptor not normally expressed in the Ltk- recipient cell. The screen yielded a positive result on testing cells arising from the third transfection, the newly expressed receptor is that for arginine vasopressin, commonly referred to as type 2 or V2. DNA from primary transformants (HTB-1 cells) served to obtain secondary transformants by the same technique (HTB-2 cells). Pharmacological properties confirmed that this new receptor, which stimulates adenylyl cyclase activity 7- to 10-fold, is the human V2 receptor and not the activated homologous murine gene. The new cell line provides a permanent accessible source to study the human receptor, by-passing the need for human kidneys. The V2 receptor was susceptible to homologous down-regulation in the HTB-2 cell, but no down-regulation of the cell authentic prostaglandin E1 receptor was observed. The vasopressin receptor did not modify phospholipase-C activity in these cells as expected from V2 receptors. Thus, we successfully applied genomic DNA-mediated gene transfer and were able to develop a cell line expressing a Gs-coupled human receptor of low abundance and poor accessibility.  相似文献   

8.
Abstract: Expression of the protein kinase C substrate MARCKS and other heat-stable myristoylated proteins have been studied in four cultured neural cell lines. Amounts of MARCKS protein, measured by [3H]myristate labeling and western blotting, were severalfold higher in rat C6 glioma and human HTB-11 (SK-N-SH) neuroblastoma cells than in HTB-10 (SK-N-MC) or mouse N1E-115 neuroblastoma cells. Higher levels of MARCKS mRNA were also detected in the former cell lines by S1 nuclease protection assay. At least two additional 3H-myristoylated proteins of 50 and 40–45 kDa were observed in cell extracts heated to >80°C or treated with perchloric acid. The 50-kDa protein, which bound to calmodulin in the presence of Ca2+, was more prominent in cells (N1E-115 and HTB-10) with less MARCKS, whereas neuromodulin (GAP-43) was detected in N1E-115 and HTB-11 cells only. Heating resulted in a fourfold increase in the detection of MARCKS by western blotting; this was not paralleled by a similar increase in [3H]myristate-labeled MARCKS and may be due to a conformational change affecting the C-terminal epitope or enhanced retention of the protein on nitrocellulose. Addition of β-12- O -tetradecanoylphorbol 13-acetate resulted in three- to fourfold increased phosphorylation of MARCKS in HTB-11 cells, with little increase noted in HTB-10 cells. These results indicate that MARCKS, neuromodulin, and other calmodulin-binding protein kinase C substrates exhibit distinct levels of expression in cultured neurotumor cell lines. Of these proteins, only MARCKS appears to be correlated with phorbol ester stimulation of phosphatidylcholine turnover in these cells.  相似文献   

9.
A series of amide derivatives of long-chain fatty acids has been studied for their effects on the proliferation of cancer cells in vitro. Fatty acids ranged from palmitic to higher polyunsaturated types containing 22 carbon atoms. The amino portions of the molecules included ammonia, ethanolamine, various amino acids and dopamine. Several cell lines were used as models and these included HTB-125 (normal human breast cells), HTB-126 (human breast cancer cells), HeLa (cervical cancer cells), WI-38 (human embryonic lung cells), RAW264.7 (mouse macrophage tumor cells) and RBL-2H3 (rat basophilic leukemia cells). The HTB lines were obtained from the same donor, so, could be considered a matched pair, that is, normal control versus cancer cells and thus, provide a model for testing specificity of action for the acylamido analogs. While many compounds were efficacious in inhibiting the proliferation of various cell lines, only two analogs showed a high degree of specificity in the matched HTB cell lines. N-palmitoyl dopamine and N-palmitoyl tyrosine each demonstrated complete specificity of action at a concentration of 10muM and were highly efficacious in both cases. No clear structure-activity pattern could be derived from these studies since the intensity of the inhibitory action seemed to depend on three factors, namely, the fatty acid, the amine group and the cell type.  相似文献   

10.
Toyocamycin and some analogues have shown potent antitumor activities; however, none of them could be used clinically primarily owing to their cytotoxicity to normal human cells. In order to overcome the weakness of these nucleoside analogues, substitution of a variety of modified sugars for the ribofuranose was explored in our laboratories with expectation that certain sugar-modified toyocamycin analogues may be selectively cytotoxic to cancer cells. In this article, we report synthesis and cytotoxicity of 4'-C- and 5'-C-substituted toyocamycins, which were prepared via the condensations of 4-C- and 5-C-substituted ribofuranose derivatives 11, 12, 13, 20, 21, and 26 with the silylated form of 4-amino-6-bromo-5-cyanopyrrolo[2,3-]pyrimidine (27) and subsequent debromination and debenzoylation. When compared to the parent toyocamycin, all these analogues showed much lower cytotoxicity to human prostate cancer cells (HTB-81), mouse melanoma cancer cells (B16) as well as normal human fibroblasts. Compound 1e showed a significant cytotoxicity to the prostate cancer cells and a moderate selectivity. The results suggested that sugar modifications, especially those that may affect phosphorylation of nucleosides, could alter cytotoxicity profile significantly.  相似文献   

11.
12.
R Sennerstam  G Auer 《Cytometry》1990,11(2):292-299
Three human breast cancer cell lines (HTB-126, MDA-231, and HTB-122) with DNA index (DI) values between 1.26 and 1.72 were analysed together with a diploid mouse embryonal carcinoma cell line (PCC3) by a TV-video time-lapse technique (pedigree analysis). Cytochemical parameters (DNA and proteins) were studied in individual cells in a rapid scanning microspectrophotometer. Post-mitotic sister cell pairs were analysed after Feulgen-naphthol-yellow staining. The DI values of the cell lines were selected to reflect various well-known clinical ploidy entities differing in malignancy potentials. A mitotic disturbance of the partition of DNA and protein to daughter cells was found in particular in MDA-231 closest to the triploid DNA modal value (DI = 1.37). Duration of mitosis was considerably longer in the near triploid line compared to the other lines. The MDA-231 line was also least sensitive to suboptimal growth conditions. This report calls attention to a possible causality between mitotic error and intraclonal genotype and cell mass heterogeneity.  相似文献   

13.
Molecular interactions of tumor cells with the microenvironment are regarded as onset of chemotherapy resistance, referred to as cell adhesion mediated drug resistance (CAM-DR). Here we elucidate a mechanism of CAM-DR in breast cancer cells in vitro. We show that human MCF-7 and MDA-MB-231 breast cancer cells decrease their sensitivity towards cisplatin, doxorubicin, and mitoxantrone cytotoxicity upon binding to collagen type 1 (COL1) or fibronectin (FN). The intracellular concentrations of doxorubicin and mitoxantrone were decreased upon cell cultivation on COL1, while cellular cisplatin levels remained unaffected. Since doxorubicin and mitoxantrone are transporter substrates, this refers to ATP binding cassette (ABC) efflux transporter activities. The activation of the transporters BCRP, P-gp and MRP1 was shown by fluorescence assays to distinguish the individual input of these transporters to resistance in presence of COL1 and related to their expression levels by western blot. An ABC transporter inhibitor was able to re-sensitize COL1-treated cells for doxorubicin and mitoxantrone toxicity. Antibody-blocking of β1-integrin (ITGB1) induced sensitization towards the indicated cytostatic drugs by attenuating the increased ABC efflux activity. This refers to a key role of ITGB1 for matrix binding and subsequent transporter activation. A downregulation of α2β1 integrin following COL1 binding appears as clear indication for the relationship between ITGB1 and ABC transporters in regulating resistance formation, while knockdown of ITGB1 leads to a significant upregulation of all three transporters. Our data provide evidence for a role of CAM-DR in breast cancer via an ITGB1 – transporter axis and offer promising therapeutic targets for cancer sensitization.  相似文献   

14.
Integrins, especially integrin alpha vbeta3, are attractive receptors for vascular targeting strategies. Recently, a divalent RGD peptidomimetic, E-[c(RGDfK)2], has been described that demonstrates increased uptake in human ovarian carcinoma OVCAR-3 xenograft tumors. Inspired by these results, we set out to develop doxorubicin conjugates with E-[c(RGDfK)2] by binding two different maleimide derivatives of doxorubicin to E-[c(RGDfK)2] that was thiolated with iminothiolane. In this way, two water-soluble derivatives were obtained, E-[c(RGDfK)2]-DOXO-1 and E-[c(RGDfK)2]-DOXO-2. In E-[c(RGDfK)2]-DOXO-1, doxorubicin was bound to the peptide through a stable amide bond, and in E-[c(RGDfK)2]-DOXO-2, a MMP-2/MMP-9 cleavable octapeptide was introduced between doxorubicin and the peptide. The rationale for a MMP-2/MMP-9-cleavable linker was that MMP-2 and MMP-9 bind to integrin alpha vbeta3 and both are overexpressed in tumor vasculature. In addition, analogous control doxorubicin-containing peptides bearing c(RADfK) that does not bind to integrin alpha vbeta3 were synthesized, i.e., c(RADfK)-DOXO-1 and c(RADfK)-DOXO-2. Whereas E-[c(RGDfK) 2]-DOXO-2 was cleaved effectively by MMP-2 and in OVCAR-3 tumor homogenates releasing a doxorubicin-tetrapeptide or doxorubicin as the final cleavage product, no release of doxorubicin was observed for E-[c(RGDfK)2]-DOXO-1. Proliferation of HUVEC in the presence of MMP-2-cleavable doxorubicin-containing peptides exhibited 6- to 10-fold increased inhibition compared to the amide-linked doxorubicin-containing peptides. In addition, inhibition of HUVEC sprouting during a 24 h exposure was approximately 3-fold stronger for E-[c(RGDfK) 2]-DOXO-2 and 20-fold stronger for the reference peptide conjugate c(RADfK)-DOXO-2 than for doxorubicin alone. In vivo studies in an OVCAR-3 xenograft model demonstrated no or only moderate antitumor efficacy for either E-[c(RGDfK)2], E-[c(RGDfK)2]-DOXO-1, E-[c(RGDfK)2]-DOXO-2, or c(RADfK)-DOXO-2, even at doses of 3 x 24 mg/kg doxorubicin equivalents, compared to an improved antitumor effect for doxorubicin at 2 x 8 mg/kg.  相似文献   

15.
A novel series of thiourea and carbamimidothioic acid derivatives was synthesized using natural alkaloid L-norephedrine as a starting material. Structures of the newly synthesized compounds were confirmed by analytical and spectral data. The synthesized compounds were evaluated in vitro for anticancer activity against the human breast (MCF-7), human liver (HEPG2), and human colon (HCT116) cancer cell lines. Best activity of the synthesized compounds was expressed against HEPG2, however, none of the compounds exceeded the IC50 of doxorubicin. The corresponding N-(1-(2-chloroacetoxy)-1-phenylpropan-2-yl)-N′-p-tolylcarbamimidothioic acid was the most potent compound and exhibited higher cytotoxic activity against the human colon cancer cell line (HCT116) when compared with the reference drug doxorubicin. Also, this compound was the most active against the MCF-7 cell line but less active than the positive control.  相似文献   

16.
Galanin is a neuropeptide that is widely distributed in the central and peripheral nervous systems. Some small cell lung carcinoma (SCLC) cell lines such as SBC-3A release only the high-molecular-mass form, with lower molecular mass forms being undetectable. To investigate the mechanism of processing of progalanin to active peptide, we studied galanin-LI in both the culture media of SBC-3A cells and in extracts from in vivo mouse SBC-3A tumors. SBC-3A cells were found to release high molecular mass galanin, but did not release active peptides. In contrast, tumor extract contained both high-molecular-mass galanin, and a cleaved lower-molecular-mass form of the peptide (8, 5 and 2 kDa). The lower-molecular-mass peptide was identified as galanin(1-20) by MALDI-TOF mass spectrometry. We then looked at MMP-2 and MMP-9 release from SBC-3A cells and tumor tissue treated with galanin and progalanin, as revealed by gelatin zymography. Galanin elicited pro-MMP-2 and pro-MMP-9 release from SBC-3A cells and tumor tissue; however, recombinant progalanin induced pro-MMP-2 and pro-MMP-9 release from tumor tissue only. This study has shown that the galanin-LI released from SCLC SBC-3A cells consisted of the high-molecular-mass peptide form, and was processed extracellularly to galanin(1-20). Furthermore, galanin was seen to induce pro-MMP-2 and pro-MMP-9 release from SBC-3A cells.  相似文献   

17.
Breast cancer cells can survive and proliferate under harsh conditions of nutrient deprivation, including limited oxygen and glucose availability. We hypothesized that such environments trigger metabolic adaptations of mitochondria, which promote tumor progression. Here, we mimicked aglycemia and hypoxia in vitro and compared the mitochondrial and cellular bioenergetic adaptations of human breast cancer (HTB-126) and non-cancer (HTB-125) cells that originate from breast tissue. Using high-resolution respirometry and western blot analyses, we demonstrated that 4 days of glucose deprivation elevated oxidative phosphorylation five-fold, increased the spread of the mitochondrial network without changing its shape, and decreased the apparent affinity of oxygen in cancer cells (increase in C 50 ), whereas it remained unchanged in control cells. The substrate control ratios also remained constant following adaptation. We also observed the Crabtree effect, specifically in HTB-126 cells. Likewise, sustained hypoxia (1% oxygen during 6 days) improved cell respiration in non-cancer cells grown in glucose or glucose-deprived medium (+ 32% and +38%, respectively). Conversely, under these conditions of limited oxygen or a combination of oxygen and glucose deprivation for 6 days, routine respiration was strongly reduced in cancer cells (−36% in glucose medium, −24% in glucose-deprived medium). The data demonstrate that cancer cells behave differently than normal cells when adapting their bioenergetics to microenvironmental conditions. The differences in hypoxia and aglycemia tolerance between breast cancer cells and non-cancer cells may be important when optimizing strategies for the treatment of breast cancer.  相似文献   

18.
19.
Doxorubicin induces DNA damage to exert its anti-cancer function. Histone deacetylase 1 (HDAC1) can protect the genome from DNA damage. We found that doxorubicin specifically downregulates HDAC1 protein expression and identified HDAC1 as a target of miR-520h, which was upregulated by doxorubicin. Doxorubicin-induced cell death was impaired by exogenous HDAC1 or by miR-520h inhibitor. Moreover, HDAC1 reduced the level of γH2AX by preventing the interaction of doxorubicin with DNA. In summary, doxorubicin downregulates HDAC1 protein expression, by inducing the expression of HDAC1-targeting miR-520h, to exacerbate DNA–doxorubicin interaction. The upregulation of HDAC1 protein may contribute to drug resistance of human cancer cells and targeting HDAC1 is a promising strategy to increase the clinical efficacy of DNA damage-inducing chemotherapeutic drugs.  相似文献   

20.
High glucosylceramide synthase (GCS) activity is one factor contributing to multidrug resistance (MDR) in breast cancer. Enforced GCS overexpression has been shown to disrupt ceramide-induced apoptosis and to confer resistance to doxorubicin. To examine whether GCS is a target for cancer therapy, we have designed and tested the effects of antisense oligodeoxyribonucleotides (ODNs) to GCS on gene expression and chemosensitivity in multidrug-resistant cancer cells. Here, we demonstrate that antisense GCS (asGCS) ODN-7 blocked cellular GCS expression and selectively increased the cytotoxicity of anticancer agents. Pretreatment with asGCS ODN-7 increased doxorubicin sensitivity by 17-fold in MCF-7-AdrR (doxorubicin-resistant) breast cancer cells and by 10-fold in A2780-AD (doxorubicin-resistant) ovarian cancer cells. In MCF-7 drug-sensitive breast cancer cells, asGCS ODN-7 only increased doxorubicin sensitivity by 3-fold, and it did not influence doxorubicin cytotoxicity in normal human mammary epithelial cells. asGCS ODN-7 was shown to be more efficient in reversing drug resistance than either the GCS chemical inhibitor d-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol or the P-glycoprotein blocking agents verapamil and cyclosporin A. Experiments defining drug transport and lipid metabolism parameters showed that asGCS ODN-7 overcomes drug resistance mainly by enhancing drug uptake and ceramide-induced apoptosis. This study demonstrates that a 20-mer asGCS oligonucleotide effectively reverses MDR in human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号