首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Puebla, L., A. OcaÑa and E. Arilla. Histamine H1-receptors modulate somatostatin receptors coupled to the inhibition of adenylyl cyclase in the rat frontoparietal cortex. Peptides 18(10) 1569–1576, 1997.—Since exogenous histamine has been previously shown to increase the somatostatin (SS) receptor-effector system in the rat frontoparietal cortex and both histamine H1-receptor agonists and SS modulate higher nervous activity and have anticonvulsive properties, it was of interest to determine the participation of the H1-histaminergic system in this response. The intracerebroventricular (i.c.v.) administration of the specific histamine H1-receptor agonist 2-pyridylethylamine (PEA) (10 μg) to rats 2 h before decapitation increased the number of SS receptors (599 ± 40 vs 401 ± 31 femtomoles/mg protein, p< 0.01) and decreased their apparent affinity for SS (0.41 ± 0.03 vs 0.26 ± 0.02 nM, p < 0.01) in rat frontoparietal cortical membranes. No significant differences were seen for the basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activities in the frontoparietal cortex of PEA-treated rats when compared to the control group. In the PEA group, however, the capacity of SS (10−4 M) to inhibit basal and FK (10−5 M)-stimulated AC activity in frontoparietal cortical membranes was significantly higher than in the control group (34 ± 1% vs 20 ± 2%, p < 0.001). The ability of low concentrations of the stable GTP analogue 5′-guanylylimidodiphosphate [Gpp(NH)p] to inhibit FK-stimulated AC activity in frontoparietal cortical membranes was similar in the PEA-treated and control animals. These results suggest that the increased SS-mediated inhibition of AC activity in the frontoparietal cortex of PEA-treated rats may be due to the increase of the number of SS receptors induced by PEA. Pretreatment with the H1-receptor antagonist mepyramine (30 mg/kg, intraperitoneally (IP) prevented the PEA-induced changes in SS binding and SS-mediated inhibition of AC activity. Mepyramine (30 mg/kg, IP) alone had no observable effect on the somatostatinergic system. The in vitro addition of PEA or mepyramine to frontoparietal cortical membranes obtained from untreated rats did not affect the SS binding parameters. Altogether, these results suggest that the H1-histaminergic system modulates the somatostatinergic system in the rat frontoparietal cortex.  相似文献   

2.
Abstract: Thioperamide (2 mg/kg, i.p.), a histamine H3-receptor antagonist, increased the number of somatostatin (SS) receptors, with no change in the affinity constant, in the rat frontoparietal cortex. This effect was prevented by treatment with ( R )-α-methylhistamine (3.2 mg/kg, i.p.), a histamine H3-receptor agonist. Thioperamide also induced an increase in SS binding in rats pretreated with mepyramine, a histamine H1-receptor antagonist, or cimetidine, a histamine H2-receptor antagonist. Pretreatment with mepyramine plus cimetidine administered simultaneously antagonized the thioperamide effect on SS binding. The increase in the number of SS receptors was accompanied by a greater SS-mediated inhibition of basal and forskolin-stimulated adenylyl cyclase (AC) activity in frontoparietal cortical membranes in the thioperamide group. Furthermore, the functional activity of the guanine nucleotide-binding inhibitory protein (Gi protein) was not altered by thioperamide or ( R )-α-methylhistamine administration in frontoparietal cortical membranes. In rats treated with mepyramine plus thioperamide or cimetidine plus thioperamide, the increase in the number of SS receptors was also accompanied by an increased SS inhibition of AC activity. Thioperamide induced a significant increase in SS-like immunoreactivity content in the frontoparietal cortex. Altogether, these results suggest that frontoparietal cortical histamine may play, at least in part, a role in the regulation of the somatostatinergic system.  相似文献   

3.
Somatostatin (SS) and noradrenaline (NA) are distributed in the rat cerebral cortex, and seizure activity is one of the aspects of behavior affected by both neurotransmitters. Due to the possible interaction between both neurotransmitter systems, we studied whether phenylphrine, an 1-adrenoceptor agonist, and prazosin, an 1-adrenoceptor antagonist, can modulate SS-like immunoreactivity (SS-LI) levels, binding of [125I][Tyr11]SS to its specific receptors, the ability of SS to inhibit adenylate cyclase (AC) activity, and the guanine nucleotide binding regulatory protein Gi and Go in the Sprague-Dawley rat frontoparietal cortex. An IP dose of 2 or 4 mg/kg of phenylephrine injected 7 h before decapitation decreased the number of SS receptors and increased the apparent affinity in frontoparietal cortex membranes. An IP dose of 20 or 25 mg/kg of prazosin administered 8 h before decapitation increased the number of SS receptors and decreased their apparent affinity. The administration of prazosin before the phenylephrine injection prevented the phenylephrine-induced changes in SS binding. The addition of phenylephrine and/or prazosin 10−5 M to the incubation medium changed neither the number nor the affinity of the SS receptors in the frontoparietal cortex membranes. Phenylephrine or prazosin affected neither SS-LI content nor the basal or forskolin (FK)-stimulated AC activities in the frontoparietal cortex. In addition, SS caused an equal inhibition of AC activity in frontoparietal cortex membranes of phenylephrine- and prazosin-treated rats compared with the respective control group. Finally, phenylephrine and prazosin did not vary the pertussis toxin (PTX)-catalyzed ADP ribosylation of Gi- and/or Go-proteins. These results suggest that the above-mentioned changes are related to the phenylephrine activation of 1-adrenoceptors or to the blocking of these receptors by prazosin. In addition, these data provide further support for a functional interrelationship between the 1-adrenergic and somatostatinergic systems in the rat frontoparietal cortex.  相似文献   

4.
In the brains of W/Wv mutant mice that have no mast cells, the histidine decarboxylase (HDC) level is as high as in the brain of congenic normal mice (+/+), but the histamine content is 53% of that of +/+ mice. The effects of alpha-fluoromethylhistidine (alpha-FMH) on the HDC activity and histamine content of the brain of W/Wv and +/+ mice were examined. In both strains, 30 min after i.p. injection of alpha-FMH the HDC activity of the brain had decreased to 10% of that in untreated mice. The histamine content decreased more gradually, and after 6 h about half of the control level remained in +/+ mice, whereas histamine had disappeared almost completely in W/Wv mice. It is concluded that the portion of the histamine content that was depleted by HDC inhibitor in a short time is derived from non-mast cells, probably neural cells. The half-life of histamine in the brain of W/Wv mice was estimated from the time-dependent decrease in the histamine content of the brain after administration of alpha-FMH: 48 min in the forebrain, 103 min in the midbrain, and 66 min in the hindbrain.  相似文献   

5.
6.
We conducted an immunoelectron-microscopic study for histamine (HA) in the enterochromaffin-like (ECL) cells of normal rats and rats given alpha-fluoromethylhistidine (alpha-FMH, 3 mg/kg per hour) via osmotic minipumps over a period of 24 h. The indirect immunoperoxidase procedure utilized a mouse monoclonal antibody (mAb), AHA-2, which is produced against glutaraldehyde-conjugated HA. alpha-FMH is a potent and irreversible inhibitor of the HA-forming enzyme histidine decarboxylase and is known to reduce tissue HA concentrations in several tissues. The present study clearly demonstrated that HA immunoreactivity, which was found to a high degree in the cores of the granules and secretory vesicles and in the cytoplasm of ECL cells of control rats, was completely abolished from the corresponding compartments in the cells of alpha-FMH-treated rats. Furthermore, treatment with alpha-FMH drastically lowered the number of secretory vesicles and was associated with larger cores in the granules of the ECL cells. These results seem to support the idea of a HA-pathway mechanism, emphasizing that the granules in normal ECL cells take up HA from the cytosol during its transport from the Golgi zone to the more peripheral portion of the cell and condense it in their cores, thus forming mature secretory vesicles. However, the present study showed that not only the secretory vesicles but also almost all the granules seen in ECL cells were already loaded with HA in their cores, suggesting that the newborn granules very rapidly take up HA from the cytosol. Also suggested was the fact that HA depletion impairs the maturation of the granules into secretory vesicles.  相似文献   

7.
Nitric oxide (NO) and somatostatin (SS) are two important mediators of the exocrine and endocrine pancreas, exerting opposite effects on this organ. There is strong evidence suggesting an interaction between pancreatic NO and SS. The aim of this study was to determine whether L-arginine (L-Arg), the substrate for NO synthase (NOS), and Nomega-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, regulate pancreatic somatostatin-like immunoreactivity (SSLI) content and the SS mechanism of action in pancreatic acinar cell membranes. L-Arg (150 mg/kg, intraperitoneally (i.p.)), L-NAME (50 mg/kg, i.p.) or L-NAME plus L-Arg were injected twice daily at 8 h intervals for 8 days. L-Arg decreased pancreatic SSLI content as well as the number of SS receptors in pancreatic acinar cell membranes whereas L-NAME increased both parameters. The stable SS analogue SMS 201-995 induced a significantly lower inhibition of forskolin-stimulated adenylyl cyclase activity in pancreatic acinar cell membranes from L-Arg-treated rats whereas an increased inhibition was observed in pancreatic acinar membranes from L-NAME-treated rats. These results indicate that the NO system may contribute to the regulation of the pancreatic somatostatinergic system.  相似文献   

8.
Several studies have shown anatomical and functional interconnections between catecholaminergic and somatostatinergic systems. To assess whether somatostatin (SS) may act presynaptically on catecholamine neurons, SS receptors were measured using radioligand test-tube binding assays on synaptosomes from hippocampus and frontoparietal cortex--areas that are innervated by catecholaminergic neurons with different densities and that have a high number of SS receptors--from control and 6-hydroxydopamine (6-OHDA)-treated rats. Intracerebroventricular (i.c.v.) injection of the catecholamine neurotoxin 6-OHDA (0.78 mg free base/kg of body weight in saline with 0.1% ascorbic acid) lowered hippocampal and frontoparietal cortical noradrenaline (NA) and dopamine (DA) levels at 1 week following the injection. Pretreatment of rats with desmethylimipramine (DMI) (40 mg/kg, intraperitoneal) prevented the drop in NA levels, but was not effective in attenuating DA depletion in the two brain areas studied. Treatment with 6-OHDA lowered the number of 125I-Tyr11-SS receptors in the hippocampus (130 +/- 19 vs. 266 +/- 16 fmol/mg protein, P < 0.001), whereas in the frontoparietal cortex a non significant 20% reduction in receptor number was found. The dissociation constants of 125I-Tyr11-SS binding to synaptosomes from frontoparietal cortex (0.65 +/- 0.06 vs. 0.60 +/- 0.04, P not significant) and hippocampus (0.44 +/- 0.04 vs. 0.63 +/- 0.14, P not significant) were similar in control and treated groups. Pretreatment with DMI reversed up to 80% of the effect of 6-OHDA on hippocampus SS receptors. DMI alone had no observable effect on the number and affinity of SS receptors. The 6-OHDA and the DMI treatment did not affect SLI levels in the brain areas studied. These results suggest that a portion of the hippocampal SS receptors may be localized presynaptically on the noradrenergic and dopaminergic nerve terminals.  相似文献   

9.
In the oxyntic mucosa of the mammalian stomach, histamine is stored in ECL cells and in mucosal mast cells. In the rat, at least 80 percent of oxyntic mucosal histamine resides in the ECL cells. Histamine is a key factor in the regulation of gastric acid secretion. Following depletion of ECL-cell histamine by treatment with alpha-fluoromethylhistidine (alpha-FMH), basal acid secretion was reduced, and gastrin-stimulated acid secretion was abolished. Vagally-induced acid secretion (by insulin injection or pylorus ligation) was unaffected by alpha-FMH treatment but inhibited by an H2 antagonist. These results suggest that gastrin stimulates acid secretion via release of ECL-cell histamine, whereas vagally-induced acid secretion--although histamine-dependent--does not rely on ECL-cell histamine. Gastrin is known to have a trophic effect on the oxyntic mucosa. By combining long-term hypergastrinemia with continuous infusion of alpha-FMH, we were able to show that gastrin-evoked trophic effects in the stomach do not depend on ECL-cell histamine.  相似文献   

10.
Substance P (SP) and somatostatin (SRIF) are widely spread throughout the CNS where they play a role as neurotransmitters and/or neuromodulators. A colocalization of both neuropeptides has been demonstrated in several rat brain areas and SP receptors have been detected in rat cortical and hippocampal somatostatinergic cells. The present study was thus undertaken to determine whether SP could modulate SRIF signaling pathways in the rat frontoparietal cortex and hippocampus. A single intraperitoneal injection of SP (50, 250 or 500 micro g/kg) induced an increase in the density of SRIF receptors in membranes from the rat frontoparietal cortex at 24 h of its administration, with no change in the hippocampus. The functionality of the SRIF receptors was next investigated. Western blot analysis of Gi proteins demonstrated a significant decrease in Gialpha1 levels in frontoparietal cortical membranes from rats treated acutely (24 h) with 250 micro g/kg of SP, which correlated with a decrease in functional Gi activity, as assessed by use of the non-hydrolyzable GTP analog 5'-guanylylimidodiphosphate. SRIF-mediated inhibition of basal or forskolin-stimulated adenylyl cyclase activity was also significantly lower in the frontoparietal cortex of the SP-treated group, with no alterations in the catalytic subunit of the enzyme. SRIF-like immunoreactivity content was increased in the frontoparietal cortex after acute (24 h) SP administration (250 or 500 micro g/kg) as well as in the hippocampus in response to 7 days of SP (250 micro g/kg) administration. All these SP-mediated effects were prevented by pretreatment with the NK1 receptor antagonist RP-67580. Although the physiologic significance of these results are unknown, the increase in SRIF receptor density together with the desensitization of the SRIF inhibitory signaling pathway might be a mechanism to potentiate the stimulatory pathway of SRIF, inducing a preferential coupling of the receptors to PLC.  相似文献   

11.
The release of endogenous histamine (HA) from the hypothalamus of anesthetized rats was measured by in vivo microdialysis coupled with HPLC with fluorescence detection. Freshly prepared Ringer's solution was perfused at a rate of 1 microliter/min immediately after insertion of a dialysis probe into the medial hypothalamus, and brain perfusates were collected every 30 min into microtubes containing 0.2 M perchloric acid. The basal HA output was almost constant between 30 min and 7 h after the start of perfusion, with the mean value being 7.1 pg/30 min. Thus, the extracellular HA concentration was assumed to be 7.8 nM, by a calculation from in vitro recovery through the dialysis membrane. Perfusion with a high K+ (100 mM)-containing medium increased the HA output by 170% in the presence of Ca2+. Systemic administration of either thioperamide (5 mg/kg, i.p.), a selective H3 receptor antagonist, or metoprine (10 mg/kg, i.p.), an inhibitor of HA-N-methyltransferase, caused an approximately twofold increase in the HA output 30-60 min after treatment. The combined treatment with thioperamide and metoprine produced a marked increase (650%) in the HA output. The HA output decreased by approximately 70% 4-5 h after treatment with alpha-fluoromethylhistidine (alpha-FMH; 100 mg/kg, i.p.), an inhibitor of histidine decarboxylase. Furthermore, the effect of combined treatment with thioperamide and metoprine was no longer observed in alpha-FMH-treated rats. These results suggest that both HA-N-methyltransferase and H3 autoreceptors are involved in maintaining a constant level of extracellular HA and that their blockade effectively results in a higher activity level of the endogenous histaminergic system in the CNS.  相似文献   

12.
Striatal atrophy in Huntington's disease (HD) is characterized by selective preservation of a subclass of neurons colocalizing NADPH-diaphorase (NADPH-d), somatostatin (SS), and neuropeptide Y (NPY), which have been reported to show three- to fivefold increases in SS-like immunoreactivity (SSLI) and NPY content. Since HD brain is capable of producing excessive quantities of the excitotoxin quinolinic acid (Quin), an N-methyl-D-aspartate (NMDA) receptor agonist, and since experimental Quin lesions show neuronal loss with sparing of NADPH-d/SS/NPY neurons, it has been suggested that Quin may be important in the pathogenesis of HD. In the present study we determined whether Quin stimulates SS gene function in cultured cortical cells known to be rich in NADPH-d/SS/NPY neurons. Cultures of dispersed fetal rat cortical cells were exposed to Quin (1 and 10 mM) with or without (-)-2-amino-5-phosphonovaleric acid (APV; 0.5 mM), an NMDA receptor antagonist, NMDA (0.2 and 0.5 mM), and glutamate (Glu; 0.5 mM). Medium and cellular SSLI was determined by radioimmunoassay and SS mRNA by Northern analysis with a cRNA probe. Quin induced significant (p less than 0.01) 1.6- and 2.5-4 fold increases in SSLI and SS mRNA accumulation, respectively, which were abolished by APV. Release of SSLI into the culture medium was stimulated two- to fivefold by Quin over a 2- to 20-h period. The increase in SS mRNA produced by Quin was time and dose dependent. A similar dose-dependent increase in SS mRNA comparable with that observed with Quin was induced by NMDA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of cocaine administration to pregnant and/or nursing rats on somatostatin (SS) concentration and receptors in offspring brains at birth and 15 days of age were studied. SS was measured by radioimmunoassay and SS receptors by radio receptor assay in frontoparietal cortex and hippocampus. In newborn and 15-day-old animals the exposure to cocaine produced an increase in SS concentration in the frontoparietal cortex and a decrease of this parameter in the hippocampus. Administration of cocaine only during lactation did not induce such changes. Exposure during pregnancy or nursing induced in 0- or 15-day-old offspring an increase in the total number of SS receptors and a decrease in the affinity constant only in the cortex.  相似文献   

14.
Rats were kindled by intraperitoneal injection of pentylenetetrazol (PTZ) (30 mg/Kg) every 48 h. Once kindled, some of the animals received a single injection of cysteamine (200 mg/Kg). Somatostatin-like immunoreactivity (SLI) and 125 I-Tyr11-somatostatin binding were measured in the frontoparietal cortex and hippocampus of the two experimental groups and the control rats. After PTZ kindling the following was observed: 1) SLI content was increased in the two areas; 2) Somatostatin receptor affinity decreased in the frontoparietal cortex and was unaltered in the hippocampus; 3) The number of somatostatin receptors decreased in the hippocampus and was unaltered in the frontoparietal cortex. Cysteamine, an agent which depletes brain somatostatin and suppresses kindled seizures in PTZ-treated rats, reversed the altered SLI levels and binding in these rats.  相似文献   

15.

Background

Functional magnetic resonance imaging (fMRI) studies indicate that the brain organizes its activity into multiple functional networks (FNs) during either resting condition or task-performance. However, the functions of these FNs are not fully understood yet.

Methodology/Principal Findings

To investigate the operation of these FNs, spatial independent component analysis (sICA) was used to extract FNs from fMRI data acquired from healthy participants performing a visual task with two levels of attention and working memory load. The task-related modulations of extracted FNs were assessed. A group of FNs showed increased activity at low-load conditions and reduced activity at high-load conditions. These FNs together involve the left lateral frontoparietal cortex, insula, and ventromedial prefrontal cortex. A second group of FNs showed increased activity at high-load conditions and reduced activity at low-load conditions. These FNs together involve the intraparietal sulcus, frontal eye field, lateral frontoparietal cortex, insula, and dorsal anterior cingulate, bilaterally. Though the two groups of FNs showed opposite task-related modulations, they overlapped extensively at both the lateral and medial frontoparietal cortex and insula. Such an overlap of FNs would not likely be revealed using standard general-linear-model-based analyses.

Conclusions

By assessing task-related modulations, this study differentiated the functional roles of overlapping FNs. Several FNs including the left frontoparietal network are implicated in task conditions of low attentional load, while another set of FNs including the dorsal attentional network is implicated in task conditions involving high attentional demands.  相似文献   

16.
Mathematical learning deficits are defined as a neurodevelopmental disorder (dyscalculia) in the International Classification of Diseases. It is not known, however, how such deficits emerge in the course of early brain development. Here, we conducted functional and structural magnetic resonance imaging (MRI) experiments in 3- to 6-year-old children without formal mathematical learning experience. We followed this sample until the age of 7 to 9 years, identified individuals who developed deficits, and matched them to a typically developing control group using comprehensive behavioral assessments. Multivariate pattern classification distinguished future cases from controls with up to 87% accuracy based on the regional functional activity of the right posterior parietal cortex (PPC), the network-level functional activity of the right dorsolateral prefrontal cortex (DLPFC), and the effective functional and structural connectivity of these regions. Our results indicate that mathematical learning deficits originate from atypical development of a frontoparietal network that is already detectable in early childhood.

Longitudinal neuroimaging of 3-6-year-old children reveals a predisposition for dyscalculia in early childhood originating from altered spontaneous activity, functional interaction and structural connectivity of a frontoparietal brain network.  相似文献   

17.
The functional role of histamine (HA) in zebrafish brains was studied. Zebrafish did not display a clear circadian variation in brain HA levels. Loading of zebrafish with l-histidine increased HA concentration in the brain. A single injection of the histidine decarboxylase (HDC) inhibitor, alpha-fluoromethylhistidine (alpha-FMH), gave rise to a rapid reduction in zebrafish brain HA. Low HDC activity in the brain after injections verified the effect of alpha-FMH. A reduction in the number of histaminergic fibres but not neurones and an increased expression of HDC mRNA was evident after alpha-FMH. Automated behavioural analysis after alpha-FMH injection showed no change in swimming activity, but abnormalities were detected in exploratory behaviour examined in a circular tank. No significant behavioural changes were detected after histidine loading. The time spent for performance in the T-maze was significantly increased in the first trial 4 days after alpha-FMH injections, suggesting that lack of HA may impair long-term memory. The rostrodorsal telencephalon, considered to correspond to the mammalian amygdala and hippocampus in zebrafish, is densely innervated by histaminergic fibres. These results suggest that low HA decreases anxiety and/or affects learning and memory in zebrafish, possibly through mechanisms that involve the dorsal forebrain.  相似文献   

18.
Long-term oxygen deficiency in vivo leads to the progressive blunting of responsiveness to sympathetic stimulation and blood catecholamines in many human and animal tissues. In order to better understand the molecular processes that underlie this phenomenon we examined the effect of hypobaric hypoxia (290 mm Hg, pO2 = 40 mM Hg) on the--beta-adrenoreceptor (beta-AR) density and the activity of adenylate cyclase (AC) and phosphoinositide turnover (PI-turnover) in cultures of human pulmonary artery and umbilical vein cells. We discovered that 30 min of hypobaric hypoxia increased basal levels of inositol mono-, bis- and tris-phosphate, products of PI-turnover in endothelial cells (EC). After 60 min of hypoxia their content amounted to 250-300% of the basal level. Desensitization of PI-turnover to histamine stimulation in EC was observed after 60 min of hypoxia. Basal and isoproterenol (beta-AR-agonist)-stimulated AC activities therewith were markedly reduced. beta-AR-density was decreased in EC membranes after 2-3 hrs of hypoxia. Similar desensitization of beta-AR and AC occurred after 1-2 hrs treatment of EC with histamine and platelet activating factor (stimulators of PI-turnover) and with phorbol myristate acetate (PK C activator). Neither hyproxia nor phorbol myristate acetate influenced beta-AR density or AC activity in protein kinase C-deficient EC (72 hrs treatment with phorbol myristate acetate). The data suggest that hypoxia-induced desensitization of beta-AR and AC in endothelial cells is mediated via hypozia-stimulated turnover and subsequent protein kinase C activation.  相似文献   

19.

Background

The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglia''s contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinson''s disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents.

Methodology/Principal Findings

In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5® software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage.

Conclusions/Significance

Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders.  相似文献   

20.
Breathing pattern is influenced by body temperature. However, the central mechanism for changing breathing patterns is unknown. Central histamine is involved in heat loss mechanisms in behavioral studies, but little is known about its effect on breathing patterns. We examined first the effect of body temperature on breathing patterns with increasing hypercapnia in conscious mice and then that of the depletion of central histamine by S(+)-alpha-fluoromethylhistidine hydrochloride (alpha-FMH) (100 mg/kg ip), a specific inhibitor of histidine decarboxylase, at normal and raised body temperatures. A raised body temperature increased respiratory frequency with reductions in both inspiratory and expiratory time and decreased tidal volume. On the other hand, alpha-FMH lowered respiratory frequency with a prolongation of expiratory time at the raised temperature; however, this was not observed at a normal temperature. These results indicate that central histamine contributes to an increase in respiratory frequency as a result of a reduction in expiratory time when body temperature is raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号