首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Yu F  Li Y  Liu L  Li Y 《Genomics》2008,91(2):152-157
Schistosoma japonicum causes schistosomiasis in humans and livestock in the Asia-Pacific region. We assembled more than 43,700 S. japonicum expressed sequence tags and conducted comparative genomic analyses between S. japonicum and its human host. Some schistosome genes showed exceptionally high similarity in nucleotide sequence to their human homologues, of which five exhibited anomalous phylogeny and human codon usage bias. The most plausible explanation for their presence is horizontal gene transfer from host to parasite. Functional evidence suggests that S. japonicum might exploit host endocrine and immune signals for cell development and maturation via these host-like genes.  相似文献   

3.
Knief C  Delmotte N  Vorholt JA 《Proteomics》2011,11(15):3086-3105
Diverse bacterial taxa that live in association with plants affect plant health and development. This is most evident for those bacteria that undergo a symbiotic association with plants or infect the plants as pathogens. Proteome analyses have contributed significantly toward a deeper understanding of the molecular mechanisms underlying the development of these associations. They were applied to obtain a general overview of the protein composition of these bacteria, but more so to study effects of plant signaling molecules on the cytosolic proteome composition or metabolic adaptations upon plant colonization. Proteomic analyses are particularly useful for the identification of secreted proteins, which are indispensable to manipulate a host plant. Recent advances in the field of proteome analyses have initiated a new research area, the analysis of more complex microbial communities. Such studies are just at their beginning but hold great potential for the future to elucidate not only the interactions between bacteria and their host plants, but also of bacteria-bacteria interactions between different bacterial taxa when living in association with plants. These include not only the symbiotic and pathogenic bacteria, but also the commensal bacteria that are consistently found in association with plants and whose functions remain currently largely uncovered.  相似文献   

4.
Embryonic invasion into the tissue of genetically different organisms has been known only in mother-embryo interactions of viviparous organisms. Hence, embryonic invasions have been thought to occur only within the same or closely related species. For endoparasitic Hymenoptera, which are oviposited in their host egg but complete their development in the later stages, entry into the host embryo is essential. To date, the entry of these parasitoids is known to be accomplished by either egg deposition directly into the embryo or by the newly hatched larva boring into the embryo. However, Copidosoma floridanum is a polyembryonic parasitoid whose development is characterized by a prolonged embryonic stage, and which lacks a larval form during its host embryogenesis. We have analyzed the behavior and fate of C. floridanum embryos co-cultured with their host embryo in vitro. Here, we show that the morula-stage embryo of C. floridanum actively invades the host embryo. Histological analyses have demonstrated that C. floridanum embryonic invasion is associated with adherent junction to host cells rather than causing an obvious wound on the host cells. These findings provide a novel case of embryonic invasion into a phylogenetically distant host embryo, ensuring cellular compatibility with host tissues.  相似文献   

5.
A comprehension of the genetics of host resistance to malaria is essential to understanding the complex host/parasite interaction. Current research is directed towards the genetic dissection of both the murine and human host responses to the disease. Significant progress has been made towards the mapping of novel murine resistance loci. In addition, the role of the major histocompatibility complex in the host response has been examined in both animal models and human populations. Several large segregation analyses, association studies and, more recently, linkage analyses have been conducted in different African populations to examine the role of host genetics in both mild and severe malaria. The results of these studies have been collated within this review. The cloning of genes involved in malarial resistance will lead not only to a greater understanding of this complex disease but, potentially, to the development of effective medical intervention.  相似文献   

6.
7.
8.
Giardia lamblia is a flagellated protozoan that causes watery diarrhea worldwide but the mechanisms of pathogenicity and the major host defenses against Giardia infection are not well characterized. The recent sequencing of the G. lamblia genome and the development of methods for genome-wide analyses of gene expression have made it possible to characterize the host-parasite interaction more fully. It is becoming clear that the host defense against a Giardia infection involves several different immunological and non-immunological mucosal processes.  相似文献   

9.
Microplitis croceipes wasps overcome host immunity by inducing changes in host physiology using factors derived from the embryo and/or larva. Teratocytes of some parasitic wasps circulate in the host hemolymph after egg hatch and synthesize proteins (TSPs), some of which are secreted to alter host physiology in support of endoparasitoid development. TSPs appear to alter host physiology, at least in part, by inhibiting synthesis of certain proteins. M. croceipes teratocytes synthesize a 13.9 kDa protein (TSP14), which inhibits synthesis of host proteins that are linked to larval growth and development. A cDNA encoding TSP14 was generated by RT-PCR from teratocyte RNA, and cloned into yeast expression vectors to produce sufficient recombinant protein for functional analyses. RecTSP14 was produced using the yeast expression system at a concentration of more than 300 micrograms/L. The recTSP14 inhibited in vitro translation of larval Heliothis virescens RNA, with the activity sensitive to boiling, protein concentration, incubation time, and storage temperatures. Although recTSP14 inhibited translation of some cellular RNAs in vitro, the in vivo incorporation of [35S]-methionine into proteins of selected insect and mammalian cell lines was not inhibited. These findings suggest that recTSP14 entry is cell type-specific and required to inhibit synthesis of target protein(s).  相似文献   

10.
The Ebola virus matrix protein VP40 plays an important role in virion formation and viral egress from cells. However, the host cell proteins and mechanisms responsible for intracellular transport of VP40 prior to its contribution to virion formation remain to be elucidated. Therefore we used coimmunoprecipitation and mass spectrometric analyses to identify host proteins interacting with VP40. We found that Sec24C, a component of the host COPII vesicular transport system, interacts specifically with VP40 via VP40 amino acids 303 to 307. Coimmunoprecipitation and dominant-negative mutant studies indicated that the COPII transport system plays a critical role in VP40 intracellular transport to the plasma membrane. Marburg virus VP40 was also shown to use the COPII transport system for intracellular transport. These findings identify a conserved intersection between a host pathway and filovirus replication, an intersection that can be targeted in the development of new antiviral drugs.  相似文献   

11.
12.
13.
Tetraphyllidean cestodes are cosmopolitan, remarkably host specific, and form the most speciose and diverse group of helminths infecting elasmobranchs (sharks, skates and rays). They show substantial interspecific variation in a variety of morphological traits, including body size. Tetraphyllideans represent therefore, an ideal group in which to examine the relationship between parasite body size and abundance. The individual and combined effects of host size, environmental temperature, host habitat, host environment, host physiology, and host type (all likely correlates of parasite body size) on parasite length were assessed using general linear model analyses using data from 515 tetraphyllidean cestode species (182 species were included in analyses). The relationships between tetraphyllidean cestode length and intensity and abundance of infection were assessed using simple linear regression analyses. Due to the contrasting morphologies between shark and batoid hosts, and contrasting physiologies between sharks of the Lamnidae family and other sharks, analyses were repeated in different subsets based on host morphology and physiologies (“sharks” vs. batoids) to determine the influence of these variables on adult tetraphyllidean tapeworm body size. Results presented herein indicate that host body size, environmental temperature and host habitat are relatively important variables in models explaining interspecific variations in tetraphyllidean tapeworm length. In addition, a negative relationship between tetraphyllidean body size and intensity of infection was apparent. These results suggest that space constraints and ambient temperature, via their effects on metabolism and growth, determine adult tetraphyllidean cestode size. Consequently, a trade-off between size and numbers is possibly imposed by external forces influencing host size, hence limiting physical space or other resources available to the parasites.  相似文献   

14.
15.
* Speciation via race formation is an important evolutionary process in parasites, producing changes that favour their development on particular host species. Here, the holoparasitic plant Cytinus, which has diverse host species in the family Cistaceae, has been used to study the occurrence of such races. * Amplified fragment length polymorphism (AFLP) analyses were performed on 174 individuals of 22 populations parasitizing 10 Cistaceae species in the Western Mediterranean basin. * Neighbour-joining, multivariate ordination analyses, and individual-based Bayesian analyses, clustered Cytinus populations into five well-characterized genetic races that, overall, agreed with the taxonomic sections of their hosts. In the AMOVA, among-races differences accounted for almost 50% of the genetic variation. The isolation-by-distance model was not supported by a Mantel test among Cytinus populations (r = 0.012; P = 0.456). All races showed low within-population genetic diversity, probably as a result of restricted pollen flow aggravated by flowering asynchrony, restricted seed dispersion, or stochastic processes. * The genetic differentiation among the five races of Cytinus is congruent with the view that these races are well-characterized lineages that have evolved independently as a result of selective pressures imposed by their hosts. This pattern, with genetically distinctive groups associated with the infrageneric sections of the host species, has not been reported previously for parasitic angiosperms.  相似文献   

16.
Parasitic plants that infect crops are devastating to agriculture throughout the world. These parasites develop a unique inducible organ called the haustorium that connects the vascular systems of the parasite and host to establish a flow of water and nutrients. Upon contact with the host, the haustorial epidermal cells at the interface with the host differentiate into specific cells called intrusive cells that grow endophytically toward the host vasculature. Following this, some of the intrusive cells re-differentiate to form a xylem bridge (XB) that connects the vasculatures of the parasite and host. Despite the prominent role of intrusive cells in host infection, the molecular mechanisms mediating parasitism in the intrusive cells remain poorly understood. In this study, we investigated differential gene expression in the intrusive cells of the facultative parasite Phtheirospermum japonicum in the family Orobanchaceae by RNA-sequencing of laser-microdissected haustoria. We then used promoter analyses to identify genes that are specifically induced in intrusive cells, and promoter fusions with genes encoding fluorescent proteins to develop intrusive cell-specific markers. Four of the identified intrusive cell-specific genes encode subtilisin-like serine proteases (SBTs), whose biological functions in parasitic plants are unknown. Expression of SBT inhibitors in intrusive cells inhibited both intrusive cell and XB development and reduced auxin response levels adjacent to the area of XB development. Therefore, we propose that subtilase activity plays an important role in haustorium development in P. japonicum.

Subtilases specifically expressed in intrusive cells regulate auxin-mediated host–parasite connections in the parasitic plant Phtheirospermum japonicum.  相似文献   

17.
Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.  相似文献   

18.
Plasmodium falciparum, the most virulent agent of human malaria, undergoes both asexual cycling and sexual differentiation inside erythrocytes. As the intraerythrocytic parasite develops it increases in size and alters the permeability of the host cell plasma membrane. An intriguing question is: how is the integrity of the host erythrocyte maintained during the intraerythrocytic cycle? We have used water window cryo X-ray tomography to determine cell morphology and hemoglobin content at different stages of asexual and sexual differentiation. The cryo stabilization preserves native structure permitting accurate analyses of parasite and host cell volumes. Absorption of soft X-rays by protein adheres to Beer–Lambert’s law permitting quantitation of the concentration of hemoglobin in the host cell compartment. During asexual development the volume of the parasite reaches about 50% of the uninfected erythrocyte volume but the infected erythrocyte volume remains relatively constant. The total hemoglobin content gradually decreases during the 48 h cycle but its concentration remains constant until early trophozoite stage, decreases by 25%, then remains constant again until just prior to rupture. During early sexual development the gametocyte has a similar morphology to a trophozoite but then undergoes a dramatic shape change. Our cryo X-ray tomography analysis reveals that about 70% of the host cell hemoglobin is taken up and digested during gametocyte development and the parasite eventually occupies about 50% of the uninfected erythrocyte volume. The total volume of the infected erythrocyte remains constant, apart from some reversible shrinkage at stage IV, while the concentration of hemoglobin decreases to about 70% of that in an uninfected erythrocyte.  相似文献   

19.
The recognition of host cells by the pathogenic yeast, Candida albicans, is probably an essential step in the pathogenesis of disease development. The interaction of yeast and hyphal mannoproteins with host cell receptors has been studied by a number of laboratories. C. albicans recognizes a variety of host cells as well as host cell extracellular matrix proteins. This observation is not unexpected given the number of sites within and on the body which can be colonized and infected by the organism. Indeed, it would appear that C. albicans has evolved a number of ways in which it recognizes the host. This statement is made with the qualification that the organism uses other processes to infect, such as morphogenesis, phenotypic switching and the production of invasive enzymes, including secreted aspartyl proteases and phosholipases. Recognition of epithelial cells is accomplished through cell surface mannoproteins (adhesins) which bind to carbohydrate-containing receptors. The number of such mannoproteins is not known; pro adhesins exist. The organism also binds to keratinocytes, endothelial cells and matrix proteins, such as fibronectin, laminin, collagen and entactin, and, as such, appears to have a integrin-like cell surface adhesin. In most cases, the adhesin for each of these host proteins is a mannoprotein. The biochemistry of the candidal adhesins has been extensively studied. However, molecular analyses of the encoding genes is only now being studied. Thus, until clean, genetic analyses are complete and strains lacking an adhesin function are constructed, a direct role for the adhesins in pathogenesis can only be inferred. At present, spontaneous, non-adhering strains of the organism have been described which are avirulent in animal models of candidiasis. However, these data only suggest a role for adherence; future studies should be directed towards resolving questions about the role of these proteins in pathogenesis.  相似文献   

20.
Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号