首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SUMMARY: Microarray data management and processing (MAD) is a set of Windows integrated software for microarray analysis. It consists of a relational database for data storage with many user-interfaces for data manipulation, several text file parsers and Microsoft Excel macros for automation of data processing, and a generator to produce text files that are ready for cluster analysis. AVAILABILITY: Executable is available free of charge on http://pompous.swmed.edu. The source code is also available upon request.  相似文献   

2.
Computational analysis is essential for transforming the masses of microarray data into a mechanistic understanding of cancer. Here we present a method for finding gene functional modules of cancer from microarray data and have applied it to colon cancer. First, a colon cancer gene network and a normal colon tissue gene network were constructed using correlations between the genes. Then the modules that tended to have a homogeneous functional composition were identified by splitting up the network. Analysis of both networks revealed that they are scale-free. Comparison of the gene functional modules for colon cancer and normal tissues showed that the modules' functions changed with their structures.  相似文献   

3.
4.
5.

Background  

Determining whether a gene is differentially expressed in two different samples remains an important statistical problem. Prior work in this area has featured the use of t-tests with pooled estimates of the sample variance based on similarly expressed genes. These methods do not display consistent behavior across the entire range of pooling and can be biased when the prior hyperparameters are specified heuristically.  相似文献   

6.
MOTIVATION: Standard statistical techniques often assume that data are normally distributed, with constant variance not depending on the mean of the data. Data that violate these assumptions can often be brought in line with the assumptions by application of a transformation. Gene-expression microarray data have a complicated error structure, with a variance that changes with the mean in a non-linear fashion. Log transformations, which are often applied to microarray data, can inflate the variance of observations near background. RESULTS: We introduce a transformation that stabilizes the variance of microarray data across the full range of expression. Simulation studies also suggest that this transformation approximately symmetrizes microarray data.  相似文献   

7.
In the decade since their invention, spotted microarrays have been undergoing technical advances that have increased the utility, scope and precision of their ability to measure gene expression. At the same time, more researchers are taking advantage of the fundamentally quantitative nature of these tools with refined experimental designs and sophisticated statistical analyses. These new approaches utilise the power of microarrays to estimate differences in gene expression levels, rather than just categorising genes as up- or down-regulated, and allow the comparison of expression data across multiple samples. In this review, some of the technical aspects of spotted microarrays that can affect statistical inference are highlighted, and a discussion is provided of how several methods for estimating gene expression level across multiple samples deal with these challenges. The focus is on a Bayesian analysis method, BAGEL, which is easy to implement and produces easily interpreted results.  相似文献   

8.
The ability to measure genome-wide expression holds great promise for characterizing cells and distinguishing diseased from normal tissues. Thus far, microarray technology has been useful only for measuring relative expression between two or more samples, which has handicapped its ability to classify tissue types. Here we present a method that can successfully predict tissue type based on data from a single hybridization. A preliminary web-tool is available online (http://rafalab.jhsph.edu/barcode/).  相似文献   

9.
This paper will give a complete methodological approach to the processing of oligonucleotide microarray data from postmortem tissue, particularly brain matter. Attention will be drawn to each of the important stages in the process; specifically the quality control, gene expression value calculation, multiple hypothesis testing and correlation analyses. We shall initially discuss the theoretical foundations of each individual method and subsequently apply the ensemble to a sample data set to illustrate and visualise important points.  相似文献   

10.
Normalization of expression levels applied to microarray data can help in reducing measurement error. Different methods, including cyclic loess, quantile normalization and median or mean normalization, have been utilized to normalize microarray data. Although there is considerable literature regarding normalization techniques for mRNA microarray data, there are no publications comparing normalization techniques for microRNA (miRNA) microarray data, which are subject to similar sources of measurement error. In this paper, we compare the performance of cyclic loess, quantile normalization, median normalization and no normalization for a single-color microRNA microarray dataset. We show that the quantile normalization method works best in reducing differences in miRNA expression values for replicate tissue samples. By showing that the total mean squared error are lowest across almost all 36 investigated tissue samples, we are assured that the bias correction provided by quantile normalization is not outweighed by additional error variance that can arise from a more complex normalization method. Furthermore, we show that quantile normalization does not achieve these results by compression of scale.  相似文献   

11.
Microarray technology is increasingly being applied in biological and medical research to address a wide range of problems. Cluster analysis has proven to be a very useful tool for investigating the structure of microarray data. This paper presents a program for clustering microarray data, which is based on the so-called path-distance. The algorithm gives in each step a partition in two clusters and no prior assumptions on the structure of clusters are required. It assigns each object (gene or sample) to only one cluster and gives the global optimum for the function that quantifies the adequacy of a given partition of the sample into k clusters. The program was tested on experimental data sets, showing the robustness of the algorithm.  相似文献   

12.
Non-DNA microarrays, such as protein, peptide and small molecule microarrays, can potentially revolutionize the high-throughput screening tools currently used in basic and pharmaceutical research. However, fundamental obstacles remain that limit their rapid and widespread implementation as an alternative bioanalytical approach. These include the prerequisite for numerous proteins in active and purified form, ineffectual immobilization strategies and inadequate means for quality control of the considerable numbers of multiple reagents. This study describes a simple yet efficient strategy for the production of non-DNA microarrays, based on the tenacious affinity of a carbohydrate-binding module (CBM) for its three-dimensional substrate, i.e., cellulose. Various microarray formats are described, e.g., conventional and single-chain antibody microarrays and peptide microarrays for serodiagnosis of human immunodeficiency virus patients. CBM-based microarray technology overcomes many of the previous obstacles that have hindered fabrication of non-DNA microarrays and provides a technically simple but effective alternative to conventional microarray technology.  相似文献   

13.
14.
15.
Rice (Oryza sativa) feeds over half of the global population. A web-based integrated platform for rice microarray annotation and data analysis in various biological contexts is presented, which provides a convenient query for comprehensive annotation compared with similar databases. Coupled with existing rice microarray data, it provides online analysis methods from the perspective of bioinformatics. This comprehensive bioinformatics analysis platform is composed of five modules, including data retrieval, microarray annotation, sequence analysis, results visualization and data analysis. The BioChip module facilitates the retrieval of microarray data information via identifiers of “Probe Set ID”, “Locus ID” and “Analysis Name”. The BioAnno module is used to annotate the gene or probe set based on the gene function, the domain information, the KEGG biochemical and regulatory pathways and the potential microRNA which regulates the genes. The BioSeq module lists all of the related sequence information by a microarray probe set. The BioView module provides various visual results for the microarray data. The BioAnaly module is used to analyze the rice microarray’s data set.  相似文献   

16.
MOTIVATION: The goal of the study is to obtain genetic information from exfoliated colonocytes in the fecal stream rather than directly from mucosa cells within the colon. The latter is obtained through invasive procedures. The difficulties encountered by this procedure are that certain probe information may be compromised due to partially degraded mRNA. Proper normalization is essential to obtaining useful information from these fecal array data. RESULTS: We propose a new two-stage semiparametric normalization method motivated by the features observed in fecal microarray data. A location-scale transformation and a robust inclusion step were used to roughly align arrays within the same treatment. A non-parametric estimated non-linear transformation was then used to remove the potential intensity-based biases. We compared the performance of the new method in analyzing a fecal microarray dataset with those achieved by two existing normalization approaches: global median transformation and quantile normalization. The new method favorably compared with the global median and quantile normalization methods. AVAILABILITY: The R codes implementing the two-stage method may be obtained from the corresponding author.  相似文献   

17.
Microarrays are an effective tool for monitoring genome-wide gene expression levels. In current microarray analyses, the majority of genes on arrays are frequently eliminated for further analysis because the changes in their expression levels (ratios) are considered to be not significant. This strategy risks failure to discover whole sets of genes related to a quantitative trait of interest, which is generally controlled by several loci that make various contributions. Here, we describe a high-throughput gene discovery method based on correspondence analysis with a new index for expression ratios [arctan (1/ratio)] and three artificial marker genes. This method allows us to quickly analyze the whole microarray dataset and discover up-/down-regulated genes related to a trait of interest. We employed an example dataset to show the theoretical advantage of this method. We then used the method to identify 88 cancer-related genes from a published microarray data from patients with breast cancer. This method also allows us to predict the phenotype of a given sample from the gene expression profile. This method can be easily performed and the result is also visible in 3D viewing software that we have developed.  相似文献   

18.
Microarrays have become a standard tool for investigating gene function and more complex microarray experiments are increasingly being conducted. For example, an experiment may involve samples from several groups or may investigate changes in gene expression over time for several subjects, leading to large three-way data sets. In response to this increase in data complexity, we propose some extensions to the plaid model, a biclustering method developed for the analysis of gene expression data. This model-based method lends itself to the incorporation of any additional structure such as external grouping or repeated measures. We describe how the extended models may be fitted and illustrate their use on real data.  相似文献   

19.

Background  

It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types.  相似文献   

20.
Most of the conventional feature selection algorithms have a drawback whereby a weakly ranked gene that could perform well in terms of classification accuracy with an appropriate subset of genes will be left out of the selection. Considering this shortcoming, we propose a feature selection algorithm in gene expression data analysis of sample classifications. The proposed algorithm first divides genes into subsets, the sizes of which are relatively small (roughly of size h), then selects informative smaller subsets of genes (of size r < h) from a subset and merges the chosen genes with another gene subset (of size r) to update the gene subset. We repeat this process until all subsets are merged into one informative subset. We illustrate the effectiveness of the proposed algorithm by analyzing three distinct gene expression data sets. Our method shows promising classification accuracy for all the test data sets. We also show the relevance of the selected genes in terms of their biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号