首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450 BM-3, a self-sufficient P450 enzyme from Bacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.  相似文献   

2.
Inami K  Mochizuki M 《Mutation research》2002,519(1-2):133-140
DNA damage is a critical factor in carcinogenesis. The Ames assay is a short-term test that screens for DNA-damaging agents. To be detected in the assay, most carcinogens require oxidation by cytochrome P450, a component of the liver homogenate preparation (S9 mix) that is traditionally used to metabolize promutagens to an active form in vitro. A combination of iron(III) porphyrin plus an oxidant activates many promutagens by mimicking cytochrome P450 metabolism. We previously reported that the mutagenicity of the N-nitrosodialkylamines was detected following reaction with tetrakis(pentafluorophenyl)porphyrinatoiron(III) chloride (Fe(F(5)P)Cl) plus tert-butyl hydroperoxide (t-BuOOH), which yielded the same alcohols and aldehydes as the enzymatic reaction. In the present study, to extend the scope of biomimetic models, we tested the mutagenicity of other carcinogens exposed to chemical oxidation systems.We investigated the optimal assay conditions for the models in Salmonella typhimurium TA1538, a strain sensitive to frame-shift mutagens. We activated 2-aminofluorene (AF), benzo[a]pyrene (B[a]P), a tryptophane pyrolysate 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), and 2-acetylaminofluorene (AAF) with Fe(F(5)P)Cl plus an oxidant-t-BuOOH, m-chloroperoxybenzoic acid (mCPBA), or magnesium monoperoxyphthalate (MPPT)-and we noted the effect of three solvents-acetonitrile (CH(3)CN),1,4-dioxane, and N,N-dimethylformamide (DMF)-on AF activation.All the promutagens became mutagenic in the presence of Fe(F(5)P)Cl plus an oxidant, with the effectiveness of the oxidant varying with the chemical. Aromatic amines, for example, showed the strongest mutagenicity with t-BuOOH whereas polycyclic hydrocarbons showed the strongest mutagenicity with mCPBA. All the promutagens were mutagenic in the presence of Fe(F(5)P)Cl plus MPPT. For AF activation, the order of effectiveness of the solvents was CH(3)CN>1,4-dioxane>DMF. The results suggested that these systems would serve as useful models for microsomal activating systems.  相似文献   

3.
The oxidation of 10 polycyclic aromatic hydrocarbons (PAH) by cytochrome P450(BSbeta) using three different electron acceptors is reported. Three PAH were found to be substrates for the oxidation by P450(BSbeta), namely anthracene, 9-methyl-anthracene and azulene. The respective oxidation products were identified by reversed-phase high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry. In addition, 10 drug-like compounds were investigated for their effects on the catalytic activity of P450(BSbeta) by carrying out inhibition studies. The stability of P450(BSbeta) against hydrogen peroxide, cumene, and ter-butyl hydroperoxide was determined. Overall, the results of this study suggested that the P450(BSbeta) enzyme represents a powerful catalyst in terms of the catalytic activity and operational stability.  相似文献   

4.
Regioselectivity is used to determine the absolute energetic differences for four different reactions catalyzed by P450. Abstraction of a hydrogen from a benzylic carbon containing a chlorine has a 1.0 kcal/mol lower barrier than abstraction from a simple benzylic carbon, which in turn is 0.4 to 0.9 kcal/mol lower than abstraction from the methyl group of an aromatic ether and 0.1 to 0.6 kcal/mol easier than aromatic hydroxylation. Isotope effects are used to determine if the enzyme-substrate complexes leading to each product, from a given substrate, are in rapid equilibrium. For all enzymes isotopically sensitive branching is observed from the benzylic carbon upon deuterium incorporation at that position to each of the other positions, indicating that each product arises from the same active oxygen species. The energetic differences determined experimentally are accurately reproduced by theoretical hydrogen atom abstractions at both the AM1 semiempirical and DFT levels of theory.  相似文献   

5.
Currently three different methods have been taken to develop new mutagenicity tester strains containing human cytochrome P450s (CYPs). Each of these use a single expression vector. In this paper we describe a fourth approach, i.e., the coexpression of a CYP and its electron-transfer flavoprotein, NADPH CYP reductase (RED), encoded by two different expression vectors. The Escherichia coli mutagenicity tester strain BMX100 has been expanded to a strain, MTC which stably expresses human RED. This new tester strain permits the biplasmid coexpression of human CYP1A2 and RED (MTC1A2). This novel strain can be used for the determination of the mutagenicity of chemicals known to be procarcinogens and metabolized by CYP1A2. The mutagenicity tester strain MTC1A2 was compared with: (i) BMX100 using the post-mitochondrial rat liver fraction (S9); (ii) BMX100 with expressing CYP1A2 alone (iii) or with expressing CYP1A2 fused to rat RED or (iv) with expressing CYP1A2, bicistronically coexpressed with rat RED. The biplasmid RED/CYP coexpression system generated a strain with the highest methoxy- and ethoxy-resorufin dealkylase activities and the highest mutagenic activities for the procarcinogens 2-aminoanthracene (2AA), aflatoxin B1 (AFB1) and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ). Furthermore, the metabolism of 2AA and IQ was detected more efficiently using the MTC1A2 strain than with the BMX100 strain plus the standard rodent liver S9 metabolic system.  相似文献   

6.
The two CHCl3 activation pathways have been studied in incubations at different oxygenation conditions with hepatic microsomes from control Sprague Dawley (SD) rats or SD rats treated with different cytochrome P450 inducers (acetone, phenobarbital, pyrazole, dexamethasone, and β-naphthoflavone). The present results provide direct evidence that CHCl3 concentration is critical in determining the role of different cytochrome P450 isoforms (CYP) and the related effects of metabolic inducers. At 0.1 mM CHCl3 concentration, the only major contribution to its oxidative biotransformation in liver microsomes from untreated rats was due to CYP2E1, as shown by metabolic inhibition due to 4-methylpyrazole or by anti-CYP2E1 antibodies. Moreover, animal treatments with acetone and pyrazole increased the production of adducts of phosgene to microsomal phospholipid by about 10–15 times. At 5 mM chloroform, in control rat liver microsomes, CYP2B1/2 was the major participant responsible for chloroform activation, while CYP2E1 and CYP2C11 were also significantly involved. Consistently, at this chloroform concentration, the effect of phenobarbital (CYP2B1/2 inducer) was maximal, producing very high levels of adducts. The reductive pathway was expressed at 5 mM CHCl3 only and was not significantly increased by any of the inducers used. Moreover, it was not inhibited by metyrapone and 4-methylpyrazole or by anti CYP2C11 antibodies. Therefore, it may be concluded that, in the range of chloroform concentrations tested, those CYPs involved in CHCl3 oxidative bioactivation do not participate in CHCl3 reduction. Chloroform oxidative metabolism in PB-microsomes could achieve very high absolute rates, much higher than those in C-microsomes; in contrast, the metabolic rates in AC- and PYR-microsomes remained within the activity levels observable in C-microsomes at high chloroform concentration. Therefore, it can be argued that the CYP2B1/2-mediated induction of CHCl3 activation is the basis for the effect of PB in potentiating chloroform hepatotoxicity. Moreover, processes other than CYP2E1-mediated metabolic induction may be more relevant in the ketones potentiation of chloroform-induced acute toxicity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 305–312, 1997.  相似文献   

7.
Nitrogen-containing analogs of chrysene, 1,10-diazachrysene (1,10-DAC) and 4,10-DAC, were tested for mutagenicity in Salmonella typhimurium TA100 in the presence of rat liver S9 and human liver microsomes to investigate the effect of nitrogen-substitution. Although these DACs could not be converted to the bay-region diol epoxide because of their nitrogen atoms in the bay-region epoxide or diol moiety, DACs were mutagenic in the Ames test with rat liver S9. Both DACs also showed mutagenicity in the Ames test using pooled human liver microsomes, although chrysene itself was not mutagenic in the presence of pooled human liver microsomes. The mutagenicity of DACs (50nmol/plate) in Ames tests using human liver microsome preparations from 10 individuals was compared with cytochrome P450 (CYP) activity in each microsome preparation to investigate the CYP isoform involved in the activation of DACs to the genotoxic forms. The numbers of induced revertants obtained by 1,10-DAC varied 6.2-folds (109-680) and those by 4,10-DAC 4.8-folds (155-751) among the 10 individuals. The number of induced revertants obtained by 1,10-DAC significantly correlated with the CYP1A2-selective catalytic activity (r=0.84, P<0.01) in each microsome preparation. On the other hand, the number of induced revertants obtained by 4,10-DAC significantly correlated with the combined activity of CYP2A6 and 1A2 (CYP2A6+0.51xCYP1A2; r=0.75, P<0.01). However, in Ames tests using microsomes from insect cells expressing various human CYP isoforms, the mutagenicity of 1,10-DAC was induced only by recombinant human CYP1A2, whereas both recombinant human CYP2A6 and 1A2 contributed to the mutagenicity of 4,10-DAC. These results suggest that 1,10-DAC shows the mutagenicity through involvement of CYP1A2 in human liver, and 4,10-DAC does so through both CYP2A6 and 1A2. In conclusion, our results suggested that the difference in the nitrogen-substituted position in the chrysene molecule might affect the mutagenic activity through influencing the ratio of participation of the metabolic activation enzyme isoforms of CYP.  相似文献   

8.
Stability studies were performed on the mono-oxygenase system involved, in particular, in the activation of polynuclear aromatic hydrocarbons (PAHs) present in rat-liver preparations used in the Ames mutagenicity test. The results indicated a good stability of the spectral response of the cytochrome-P-450 system, but a much lower stability of its enzymatic activities measured with various substrates, thus showing the inadequacy of the spectral response to characterize the PAH mono-oxygenase activity of the preparations. Epoxide hydrolase activity was found to be stable. Various mono-oxygenase activities were measured in preparations induced with phenobarbital, 3-methylcholanthrene or Aroclor 1254. The activities of two enzymes, benzo[a]pyrene hydroxylase and ethoxyresorufin-O-dealkylase, were found suitable to characterize the capacity of the preparations to metabolize PAH to mutagens. The efficiency of the same preparations to promote the mutagenicity of benzo[a]pyrene and aflatoxin B1 in the Ames test was determined. There was an excellent general correlation between the efficiencies for mutagenic activation of the preparations and the two enzymatic activities mentioned above. Determination of ethoxyresorufin-O-dealkylase (or benzo[a]pyrene hydroxylase) and benzo[a]pyrene 4,5-oxide hydrolase activities is proposed for characterizing the rat-liver preparations used in the Ames test.  相似文献   

9.
BACKGROUND: Benzo(a)pyrene (BaP), anthracene (ANTH) and chrysene (CHRY) are polynuclear aromatic hydrocarbons (PAHs) implicated in renal toxicity and carcinogenesis. These PAHs elicit cell type-specific effects that help predict toxicity outcomes in vitro and in vivo. While BaP and ANTH selectively injure glomerular mesangial cells, and CHRY targets cortico-tubular epithelial cells, binary or ternary mixtures of these hydrocarbons markedly reduce the overall cytotoxic potential of individual hydrocarbons. METHODS: To study the biochemical basis of these antagonistic interactions, renal glomerular mesangial cells were challenged with BaP alone (0.03 - 30 microM) or in the presence of ANTH (3 microM) or CHRY (3 microM) for 24 hr. Total RNA and protein will be harvested for Northern analysis and measurements of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin-O-deethylase (EROD) activity, respectively, to evaluate cytochrome P450 mRNA and protein inducibility. Cellular hydrocarbon uptake and metabolic profiles of PAHs were analyzed by high performance liquid chromatography (HPLC). RESULTS: Combined hydrocarbon treatments did not influence the cellular uptake of individual hydrocarbons. ANTH or CHRY strongly repressed BaP-inducible cytochrome P450 mRNA and protein expression, and markedly inhibited oxidative BaP metabolism. CONCLUSION: These findings indicate that antagonistic interactions among nephrocarcinogenic PAHs involve altered expression of cytochrome P450s that modulate bioactivation profiles and nephrotoxic/ nephrocarcinogenic potential.  相似文献   

10.
Spices, herbal and black teas, and soybean products were analyzed for their capacity to inhibit in vitro metabolism of drug marker substrates by human cytochrome P-450 (CYP) isoforms. Inhibition of drug metabolism was determined using aliquots or infusions from these products in a fluorescence-detection assay. Aliquots and infusions of all natural product categories inhibited 3A4 metabolism to some extent. Of the 26 aliquots from teas and spices further tested with 2C9, 2C19 and 2D6, many demonstrated significant inhibitory activity on the metabolism mediated by these isoforms. Black teas and herbal tea mixtures were generally more inhibitory than single-entity herbal teas. Spices and single-entity herbal teas showed species-specific isoform inhibition with sage, thyme, cloves, St John's Wort and goldenseal having the highest activity against several isoforms. Seven soybean varieties tested, as well as daidzein and genistein isolated from soybean, were found to inhibit 3A4-mediated metabolism. Genistein was found to inhibit 3A7- but not 3A5-mediated metabolism of the marker substrate. Assessment of the in vitro CYP inhibition potential for these natural products has important implications for predicting the likelihood of natural product-drug interactions if these products are taken concomitantly.  相似文献   

11.
Pretreatment of rats by ellipticines enhanced the microsomal concentration of cytochrome P-450, benzo[a]pyrene (BP) metabolism and activation and, to a smaller extent, ethoxycoumarin deethylation, but not acetanilide hydroxylation. This increased BP biotransformation was essentially due to the formation of bay-region metabolites, BP 9,10-diol, BP 7,8-diol and 9-hydroxy-BP, or to the formation of BP 7,8-diol-9,10-epoxide- and of 9-hydroxy-BP 4,5-oxide-DNA adducts. In the ellipticine series, 9-fluoroellipticine (9-FE) presents a slight inducing potency compared with the parent and 9-hydroxy molecules. Pretreatment of mice with 9-hydroxyellipticine (9-OHE) led also to an increased mutagenicity of BP and to an augmentation of skin carcinogenesis by 7,12-dimethylbenz[a]anthracene (DMBA). These results clearly show that 9-OHE induces the biosynthesis of cytochrome P-450 which markedly stimulates the mutagenic and carcinogenic potentialities of polycyclic aromatic hydrocarbons (PAH).  相似文献   

12.
Increasing evidence suggests that polycyclic aromatic hydrocarbons (PAHs) such as benzo[a]pyrene (BaP) are localized to the mitochondria. Because the toxic effects of many PAHs are the result of metabolism by cytochrome P4501A (CYP1A), it is important to investigate whether active forms of these enzymes can be identified in the mitochondria. In this study, we identified mitochondrial P450s with a monoclonal antibody against scup (Stenotomus chrysops) CYP1A in the isolated mitochondrial fraction of the liver from adult male mummichog (Fundulus heteroclitus) livers. The size of the protein in the mitochondria was similar to that of microsomal CYP1A. Fish dosed with 10 mg/kg BaP had increased EROD activity in the mitochondrial fraction compared to controls. In mummichog larvae dosed with 100 µg/L BaP and 100 µg/L benzo[k]fluoranthene, CYP1A protein levels as well as enzyme activity were elevated. However, fish from a PAH-polluted Superfund site (Elizabeth River, Portsmouth VA) showed recalcitrant mitochondrial CYP1A protein levels and enzyme activity in a similar manner to microsomal CYP1A.  相似文献   

13.
Highly miniaturized P450 screening assays designed to enable facile analysis of P450 drug interactions in a 1536-well plate format with the principal human cytochrome P450 enzymes (CYP3A4, 2D6, 2C9, 2C19, and 1A2) and Vivid fluorogenic substrates were developed. The detailed characterization of the assays included stability, homogeneity, and reproducibility of the recombinant P450 enzymes and the kinetic parameters of their reactions with Vivid fluorogenic substrates, with a focus on the specific characteristics of each component that enable screening in a low-volume 1536-well plate assay format. The screening assays were applied for the assessment of individual cytochrome P450 inhibition profiles with a panel of selected assay modifiers, including isozyme-specific substrates and inhibitors. IC(50) values obtained for the modifiers in 96- and 1536-well plate formats were similar and comparable with values obtained in assays with conventional substrates. An overall examination of the 1536-well assay statistics, such as signal-to-background ratio and Z' factor, demonstrated that these assays are a robust, successful, and reliable tool to screen for cytochrome P450 metabolism and inhibition in an ultra-high-throughput screening format.  相似文献   

14.
Mammalian cytochrome P450 reductase (CPR) and cytochrome P450 (CP) play important roles in organic nitrate bioactivation; however, the mechanism by which they convert organic nitrate to NO remains unknown. Questions remain regarding the initial precursor of NO that serves to link organic nitrate to the activation of soluble guanylyl cyclase (sGC). To characterize the mechanism of CPR-CP-mediated organic nitrate bioactivation, EPR, chemiluminescence NO analyzer, NO electrode, and immunoassay studies were performed. With rat hepatic microsomes or purified CPR, the presence of NADPH triggered organic nitrate reduction to NO2(-). The CPR flavin site inhibitor diphenyleneiodonium inhibited this NO2(-) generation, whereas the CP inhibitor clotrimazole did not. However, clotrimazole greatly inhibited NO2(-)-dependent NO generation. Therefore, CPR catalyzes organic nitrate reduction, producing nitrite, whereas CP can mediate further nitrite reduction to NO. Nitrite-dependent NO generation contributed <10% of the CPR-CP-mediated NO generation from organic nitrates; thus, NO2(-) is not the main precursor of NO. CPR-CP-mediated NO generation was largely thiol-dependent. Studies suggested that organic nitrite (R-O-NO) was produced from organic nitrate reduction by CPR. Further reaction of organic nitrite with free or microsome-associated thiols led to NO or nitrosothiol generation and thus stimulated the activation of sGC. Thus, organic nitrite is the initial product in the process of CRP-CP-mediated organic nitrate activation and is the precursor of NO and nitrosothiols, serving as the link between organic nitrate and sGC activation.  相似文献   

15.
Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.  相似文献   

16.
Cytochrome P450s (CYPs) hold a balance in studying pharmacokinetics, toxico-kinetics, drug metabolism, and drug-drug interactions, which require association with cytochrome P450 reductase (CPR) to achieve optimal activity. A novel system of Saccharomyces cerevisiae useful for expression studies of mammalian microsomal CYPs was established. Human CPR (hCPR) was co-expressed with human CYP3A4 (hCYP3A4) in this system, and two expression plasmids pTpLC and pYeplac195-3A4 containing the cDNA of hCPR and hCYP3A4 were constructed, respectively. The two plasmids were applied first and controlled by phosphoglycerate kinase (PGK) promoter. S. cerevisiae BWG1-7alpha transformed with the expression plasmids produced the respective proteins in the expected molecular sizes reactive with both anti-hCYP3A4 immunoglobulin (Ig) and anti-hCPR Ig. The activity of hCPR in yeast BWG-CPR was 443.2 nmol reduced cytochrome c/min/mg, which was about three times the CPR activity of the microsome prepared from the parental yeast. The protein amount of hCYP3A4 in BWG-CPR/3A4 was 35.53 pmol/mg, and the 6beta-hydroxylation testosterone formation activity of hCYP3A4 expressed was 7.5 nmol/min/nmol CYP, 30 times higher than the activity of hCYP3A4 expressed in the parental yeast, and almost two times the activity of hCYP3A4 from homologous human liver microsome. Meanwhile, BWG-CPR/3A4 retained 100 generations under nonselective culture conditions, indicating this yeast was a mitotically stable transformant. BWG-CPR was further tested daily by the PCR amplification of hCPR of yeast genome, Western blot analysis, and the activity assay of hCPR of yeast microsome. This special expression host for CYPs was validated to be stable and efficient for the expression of CYPs, applying as an effective selection model for the drug metabolism in vitro.  相似文献   

17.
The actions of polycyclic aromatic hydrocarbons and glucocorticoids to regulate the synthesis of cytochrome P-450c (the major isozyme induced by polycyclic aromatic hydrocarbons) were investigated in fetal rat hepatocytes maintained in primary monolayer culture. Treatment of hepatocytes in culture with 1,2-benzanthracene resulted in a 50-fold increase in 7-ethoxycoumarin O-deethylase activity. The level of P-450c increased in the cells in a time-dependent fashion as determined by immunoelectrophoretic analysis. The inductive effect of BA was potentiated approximately 1.6- to 2.3-fold when 1 microM dexamethasone was included in the culture medium. However, dexamethasone alone had little or no effect on the induction of P-450c. The rate of synthesis of P-450c was examined by immunoisolation of the specific isozyme from total cellular proteins radiolabeled with [35S]methionine and from the protein products formed during in vitro translation of the isolated mRNA. In addition, the amount of mRNA specific for cytochrome P-450c was determined by Northern blot analysis of RNA extracted from cultured cells. The changes in the rates of synthesis and mRNA levels were found to parallel the changes in enzyme activity. The concentration of dexamethasone required to cause a half-maximal increase in P-450c content in the presence of 1,2-benzanthracene was between 10(-8) and 10(-7) M. It is concluded that glucocorticoids act synergistically with polycyclic aromatic hydrocarbons to increase the levels of P-450c expressed in the fetal rat liver, and that this action is likely mediated by the classical type II glucocorticoid receptor.  相似文献   

18.
Cytochrome P450IA1 (purified from hepatic microsomes of beta-naphthoflavone-treated rats) has been covalently modified with the lysine-modifying reagent acetic anhydride. Different levels of lysine residue modification in cytochrome P450IA1 can be achieved by varying the concentration of acetic anhydride. Modification of lysine residues in P450IA1 greatly inhibits the interaction of P450IA1 with NADPH-cytochrome P450 reductase. Modification of 1.0 and 3.3 mol lysine residues per mole P450IA1 resulted in 30 and 95% decreases, respectively, in 7-ethoxycoumarin hydroxylation by a reconstituted P450IA1/reductase complex. However, modification of 3.3 mol lysine residues per mole P450IA1 decreased only cumene hydroperoxide-supported P450-dependent 7-ethoxycoumarin hydroxylation by 30%. Spectral and fluorescence studies showed no indication of global conformational change of P450IA1 even with up to 8.8 mol lysine residues modified per mole P450IA1. These data suggest that at least three lysine residues in P450IA1 may be involved in the interaction with reductase. Identification of lysine residues in P450IA1 possibly involved in this interaction was carried out by [14C]acetic anhydride modification, trypsin digestion, HPLC separation, and amino acid sequencing. The lysine residue candidates identified in this manner were K97, K271, K279, and K407.  相似文献   

19.
Studies were designed to investigate various anions and their effects on cytochrome P450 2D6-mediated metabolism in vitro. Incubations were initially performed in buffered phosphate, carbonate, sulfate, and acetate solutions (50mM, pH 7.4), with CYP2D6 substrates dextromethorphan, 7-methoxy-4-(aminomethyl)-coumarin (MAMC), (S,S)-3-[3-(methylsulfonyl)phenyl]-1-propylpiperidine hydrochloride [(-)-OSU6162], and amitriptyline. Dextromethorphan and MAMC O-dealkylation activity in buffered carbonate was approximately 25 and 38%, respectively, relative to phosphate, while activity in sulfate and acetate buffers displayed minor differences. In contrast, N-dealkylation reactions for both (-)-OSU6162 and amitriptyline were unaffected by the presence of carbonate, and the other anions tested. Subsequent kinetic studies revealed that the basis of reduced turnover of dextromethorphan was primarily a V(max) effect, as the V(max) for the rate was 16.9 and 5.6 pmol/min/pmol P450 in phosphate and carbonate, respectively. Interestingly, similar rates of dextromethorphan O-demethylation in phosphate and carbonate were observed when reactions were supported by cumene hydroperoxide (CuOOH). Furthermore, it was observed that while CuOOH could equally support dextromethorphan O-demethylation compared to NADPH, amitriptyline N-demethylation was only minimally supported. Finally, intramolecular kinetic isotope effect (KIE) experiments with amitriptyline-d3 in CuOOH-supported reactions yielded a k(H)/k(D) of 5.2, substantially higher than in phosphate and carbonate supported by NADPH (k(H)/k(D)=1.5). Overall, results suggest that carbonate disrupts the relative ratios of the potential P450 oxygenating species, which differentially catalyze O- and N-dealkylation reactions mediated by CYP2D6.  相似文献   

20.
Induction of cytochrome P450 (CYP) by drugs is one of major concerns for drug-drug interactions. Thus, the assessment of CYP induction by novel compounds is a vital component in the drug discovery and development processes. Primary human hepatocytes are the preferred in vitro model for predicting CYP induction in vivo. However, their use is hampered by the erratic supply of human tissue and donor-to-donor variability. Although cryopreserved hepatocytes have been recommended for short-term applications in suspension, their use in studies on induction of enzyme activity has been limited because of poor attachment and response to enzyme inducers. In this study, we report culture conditions that allowed the attachment of cryopreserved human hepatocytes and responsiveness to CYP inducers. We evaluated the inducibility of CYP1A1/2 and CYP3A4 enzymes in cryopreserved hepatocytes from three human donors. Cryopreserved human hepatocytes were cultured in serum-free medium for 4 d. They exhibited normal morphology and measurable viability as evaluated by the reduction of tetrazolium salts (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) by cellular dehydrogenases. Treatment with beta-naphthoflavone (10 microM) for 3 d increased ethoxyresorufin-O-deethylase activity (CYP1A1/2) by 6- to 11-fold over untreated cultures and increased CYP1A2 messenger ribonucleic acid (mRNA) expression by three- to eightfold. Similarly, treatment of cryopreserved human hepatocytes with rifampicin (25 microM) for 3 d increased testosterone 6 beta-hydroxylase activity (CYP3A4) by five- to eightfold over untreated cultures and increased CYP3A4 mRNA expression by four- to eightfold. The results suggest that cryopreserved human hepatocytes can be a suitable in vitro model for evaluating xenobiotics as inducers of CYP1A1/2 and CYP3A4 enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号