首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis of collagen and proteoglycans by cultured chondrocytes, as measured by the incorporation of L-[3H]proline into hydroxyproline and [3H]acetate into glycosaminoglycans, was shown to be depressed by 59% and 39%, respectively, by the addition of exogenous proteoglycan at a concetration of 10 mg/ml growth media. The incorporation of L-[3H]proline into acid-in-soluble protein remained unaltered in the presence of the proteoglycan. It was concluded that the effect was depressing the activity of the enzymatic steps, associated with the endoplasmic reticulum, which are responsible for the post-traslational modification of collagen and proteoglycan.  相似文献   

2.
Proteoglycan biosynthesis by cultured chondrocytes was shown to be depressed by extracellular concentrations of proteoglycan and partially degraded proteoglycan. This reduction in proteoglycan synthesis was reversible on removal of the added proteoglycan. Benzyl-β-D-xyloside, an exogenous acceptor of glycosaminoglycan synthesis, was used and it was shown that proteoglycan was inhibiting glycosaminoglycan synthesis. Proteoglycan had no effect on the overall protein synthesis by the cultured cells. It was concluded that the exogenous proteoglycan was inhibiting proteoglycan synthesis at the level of initiation or elongation of the glycosaminoglycan chains.  相似文献   

3.
Proteoglycan biosynthesis by cultured chondrocytes was shown to be depressed by extracellular concentrations of proteoglycan and partially degraded proteoglycan. This reduction in proteoglycan synthesis was reversible on removal of the added proteoglycan. Benzyl-beta-D-xyloside, an exogenous acceptor of glycosaminoglycan synthesis, was used and it was shown that proteoglycan was inhibiting glycosaminoglycan synthesis. Proteoglycan had no effect on the overall protein synthesis by the cultured cells. It was concluded that the exogenous proteoglycan was inhibiting proteoglycan synthesis at the level of initiation or elongation of the glycosaminoglycan chains.  相似文献   

4.
The rate of synthesis of glycosaminoglycans by cartilage was shown to be dependent on an exogenous source of L-glutamine. In the absence of L-glutamine the tissue and cellular levels of this amino acid were rapidly depleted. The levels of nucleotide sugars and their precursors were measured after separation on Dowex 1 (formate form) in cartilage incubated with and without L-glutamine. It was found that the levels of N-acetylhexoamine 6-phosphate and UDP-N-acetylhexosamine were decreased by 27 and 40% respectively. This demonstrates that L-glutamine is required as the amido group donor in the synthesis of glucosamine 6-phosphate and that the decrease in glycosaminoglycan synthesis is due to the limitation in synthesis of UDP-N-acetylhexoamine.  相似文献   

5.
Proteoglycans were extracted from the extracellular matrix of cultures of embryonic chick chondrocytes grown at high density and were purified by CsCl density gradient centrifugation. The chemical, physical and hyaluronate binding properties of the proteoglycans were similar to those observed in proteoglycans from other hyaline cartilages. Proteoglycans in the media were also purified and on analysis showed three populations of proteoglycans to be present. One population had the physical characteristics of a typical proteoglycan subunit and bound hyaluronate, the other two populations were unable to complex with hyaluronate but one had the physical characteristics of the proteoglycan subunit and the other was of smaller molecular weight. The small molecular weight appears to be a product of the enzymatic degradation of the larger molecular weight species.  相似文献   

6.
We examined the effect of an extracellular matrix (ECM), produced by either bovine corneal endothelial (BCE) cells or mouse PF HR-9 teratocarcinoma cells, on the ability of rabbit costal chondrocytes to re-express their phenotype once confluent. Rabbit chondrocytes seeded at low densities and grown on plastic tissue culture dishes produced a heterogeneous cell population composed of both overtly differentiated and poorly differentiated chondrocytes, as well as fibroblastic cells. On the other hand, cultures grown on BCE-ECM- or HR-9-ECM-coated dishes reorganized into a homogeneous cartilage-like tissue composed of round cells surrounded by a refractile matrix that stained intensely with alcian green. The cell ultrastructure and that of their pericellular matrix were similar to those seen in vivo. The differentiation of chondrocyte cultures grown on the ECMs vs. plastic was reflected by a two- to three-fold increase in the maximal rate of incorporation of [35S]sulfate and [3H]glucosamine into proteoglycans. Furthermore, the ratio of 35S-labeled proteoglycans incorporated in the cell layer vs. those released into the medium was 1.5-2.5-fold higher when cultures were grown on the ECMs than on plastic. This suggests that the ECMs stimulate the incorporation of newly synthesized proteoglycans into a cartilaginous matrix. Since chondrocyte cultures grown on BCE-ECM or HR-9-ECM give rise to a homogeneous cartilage-like tissue even when seeded at low cell densities, they provide a model for the study of cell-substrate interactions that are responsible for the maintenance of the differentiated phenotype of chondrocytes.  相似文献   

7.
The in vitro phenotype of bovine articular chondrocytes is described. Chondrocytes plated at high density in roller-bottle and dish cultures were maintained in vitro. The major matrix macromolecules, collagen and proteoglycan, synthesized by these cells were characterized during the course of the culture period. The chondrocytes synthesized mainly Type II collagen, which was found predominantly in the cell-associated matrix. The media contained a mixture of Type II and Type III collagens. Type I collagen was detectable in neither the medium nor the cell-associated matrix. The proteoglycan monomers found in media and cell-associated matrix had the same hydrodynamic sizes as monomers synthesized by cartilage slices or those extracted from adult articular cartilage. The majority of proteoglycans synthesized by the cells were found in high molecular weight aggregates which were readily recovered from the media and were extractable from cell-associated matrix with low ionic strength buffers. The results demonstrate the long-term in vitro phenotypic stability of the bovine articular chondrocytes. The advantages of the in vitro system as a model for studying the effects of external agents, such as drugs and vitamins, are discussed.  相似文献   

8.
The effects of exogenous hyaluronic acid on cell cultures of chick embryo limb chondrocytes are reported in this paper. The evidence shows that exogenous hyaluronic acid (HA) can both depress the incorporation of 35SO4 into glycosaminoglycans and cause a displacement of newly synthesized proteoglycan from the cell layer to the culture medium. The results demonstrate that these two effects are mediated by distinct mechanisms. The displacement effect has a rapid onset (by 2 hr) while the effect of exogenous HA on 35SO4 incorporation has a long latency (12 hr). The displacement effect is produced by a lower concentration (5 μg/ml) of hyaluronate oligomers than the effect on 35SO4 incorporation (50 μg/ml). In addition, displacement is produced only by hyaluronate oligomers that are decasaccharides or larger. The depression of 35SO4 incorporation is produced by tetrasaccharides as well as high molecular weight HA. In fact tetrasaccharides can depress 35SO4 incorporation without causing the displacement effect.  相似文献   

9.
Synthesis of collagen and proteoglycan by rabbit articular chondrocytes and synovial fibroblasts has been studied over a 12-week period in primary monolayer culture. Chondrocytes, but not fibroblasts, accumulate large quantities of proteoglycan over the culture period studied. Radiolabeling studies with [35S]sulfate have shown that the major proteoglycan synthesized by cultured chondrocytes is similar to the proteoglycan of cartilage matrix. Chondrocytes also synthesize a smaller dermatan sulfate proteoglycan, which is apparently the only proteoglycan species produced by synovial fibroblasts. Collagen synthesis was studied by radiolabeling with [3H]proline. Cultured chondrocytes produce mainly Type II collagen, with lesser amounts of Type I, whereas synovial fibroblasts produce Type I collagen and some low molecular weight collagenous species. Therefore, long-term monolayer culture permits the production of extensive chondroid matrix by chondrocytes, but not fibroblasts.  相似文献   

10.
We studied the effect of the depletion of glutathione on the synthesis of proteoglycan and collagen in cultured chick chondrocytes. When the cultured chondrocytes were incubated with 1 mM buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamyl-cysteine synthetase, the intracellular glutathione level markedly dropped within 12 h with no loss of cell viability. Incorporation of 35SO2-4 into proteoglycan was lowered in the presence of BSO. When the 35S-labeled proteoglycans were separated into two fractions by glycerol density gradient centrifugation, the inhibitory effect of BSO on the synthesis of proteoglycan was greater in the fast-sedimenting proteoglycan fraction, which consisted mainly of cartilage specific large proteoglycan (PG-H), than in the slowly sedimenting proteoglycan fraction. The inhibition by BSO of the synthesis of core protein-free glycosaminoglycan chains primed by p-nitrophenyl-beta-D-xyloside was smaller than the inhibition of the synthesis of proteoglycan. Analysis of glycosaminoglycans labeled with [3H]glucosamine indicated that the treatment of chondrocytes with BSO resulted in a small increase in the proportion of synthesis of hyaluronic acid to the synthesis of total glycosaminoglycan. The incorporation of [3H]proline into collagen was also inhibited by BSO. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the 3H-labeled collagen showed that, in the presence of BSO, processing of Type II collagen appeared to slow down and the proportion of Type X collagen synthesis was reduced.  相似文献   

11.
The incorporation of [3H]glycine into acid-insoluble protein and of [3H]acetate into glycosaminoglycans by cultured chick chondrocytes was stimulated by the addition of L-glutamine to the incubation medium. The effect of exogenous L-glutamine on protein synthesis was studied further by examining changes in the sedimentation patterns on sucrose gradients of ribosomes isolated from chondrocytes incubated in presence and absence of L-glutamine. It was found that the absence of L-glutamine caused a disaggregation of polyribosomes that was revered by the addition of this amino acid to the culture medium. No detectable glutamine synthetase activity could be measured in avian articular cartilage. These results indicate that L-glutamine is an essential amino acid for cartilage in that an extracellular supply of this amino acid is required for the maintenance of protein and glycosaminoglycan synthesis. A dependence of L-glutamine was also demonstrated for other avain connective tissues.  相似文献   

12.
Extracellular matrix formation by chondrocytes in monolayer culture   总被引:4,自引:6,他引:4       下载免费PDF全文
In previous studies were have reported on the secretion and extracellular deposition of type II collagen and fibronectin (Dessau et al., 1978, J. Cell Biol., 79:342-355) and chondroitin sulfate proteoglycan (CSPG) (Vertel and Dorfman, 1979, Proc. Natl. Acad. Sci. U. S. A. 76:1261-1264) in chondrocyte cultures. This study describes a combined effort to compare sequence and pattern of secretion and deposition of all three macromolecules in the same chondrocyte culture experiment. By immunofluorescence labeling experiments, we demonstrate that type II collagen, fibronectin, and CSPG reappear on the cell surface after enzymatic release of chondrocytes from embryonic chick cartilage but develop different patterns in the pericellular matrix. When chondrocytes spread on the culture dish, CSPG is deposited in the extracellular space as an amorphous mass and fibronectin forms fine, intercellular strands, whereas type II collagen disappears from the chondrocyte surface and remains absent from the extracellular space in early cultures. Only after cells in the center of chondrocyte colonies shape reassume spherical shape does the immunofluorescence reveal type II collagen in the refractile matrix characteristic of differentiated cartilage. By immunofluorescence double staining of the newly formed cartilage matrix, we demonstrate that CSPG spreads farther out into the extracellular space that type II collagen. Fibronectin finally disappears from the cartilage matrix.  相似文献   

13.
Degradation and restructuring of the elastin fiber network of the lung is a pivotal process in the pathogenesis of emphysema. Alveolar macrophages and neutrophils are probably directly involved in elastin degradation, but they may also indirectly influence elastin structure and function by altering other extracellular matrix components such as proteoglycans. In this study the mechanisms of proteoglycan degradation by human alveolar macrophages and neutrophils have been explored. Macrophages appear to utilize plasminogen in solubilizing 35SO4-labeled proteoglycans in extracellular matrix produced by neonatal rat vascular smooth muscle cells. Proteoglycan degradation by macrophages is significantly augmented in the presence of 1% human serum. In contrast, neutrophils apparently utilize intrinsic proteinases to solubilize extracellular matrix proteoglycans, and serum inhibits proteoglycan degradation by these cells. Persistent inflammation in the terminal airways of cigarette smokers may produce proteoglycan degradation and influence elastin fiber architecture where the earliest physiological and anatomic evidence of emphysema appears.  相似文献   

14.
15.
We have examined the interactions between the small dermatan sulfate proteoglycan decorin and collagen types I-VI using solid phase binding assays. The results of these studies showed that 125I-decorin bound most efficiently to collagen type VI in a time- and concentration-dependent manner. Furthermore, this interaction was specific and of moderately high affinity (Kd approximately 3 x 10(-7) M). Binding of decorin to collagen type VI appears to involve the decorin core protein rather than the glycosaminoglycan side chains, since the isolated core protein as well as a recombinant fusion protein containing a major segment (65%) of the human decorin core protein inhibited binding of 125I-decorin to collagen type VI. Other related proteoglycans and their respective core proteins also inhibited the binding of 125I-decorin to collagen type VI, whereas unrelated proteins and isolated glycosaminoglycan chains were without effect. In addition to decorin, collagen type II was also shown to bind to immobilized collagen type VI. Both interactions were effectively inhibited by preincubation of the immobilized collagen VI with decorin or collagen type II. These results suggested that the collagen type VI molecule has binding sites for collagen type II and decorin which are located in close proximity on the collagen type VI molecule. Possible functional roles of these interactions are discussed.  相似文献   

16.
Hydra are characterized by having their body wall organized as an epithelial bilayer with an intervening acellular layer termed the mesoglea. As an extension of the previous study which indicated that mesoglea is a primitive basement membrane which has retained some characteristics of interstitial extracellular matrix, the present study was undertaken to analyze the role of mesoglea components during head regeneration in Hydra vulgaris. Studies were conducted that utilized drugs that affect collagen processing or secondary collagen structure (beta-aminoproprionitrile; 2,2'-dipydridyl; and cis-4-hydroxy-L-proline) and a drug that inhibits addition of glycosaminoglycan chains to proteoglycan core proteins (p-nitrophenyl-beta-D-xylopyranoside). These studies indicated that alterations in the structure of collagens or proteoglycans caused blockage of head regeneration in Hydra as monitored over a 48-hr period. Blockage of head regeneration was reversible once the drugs were removed, indicating that the drugs were not having a general toxic effect on the organism. Radiotracer studies also indicated that blockage of head regeneration was not simply due to a general depression of protein synthesis by the drugs. Various controls indicated that each drug was affecting mesoglea components under the conditions utilized in these studies. These observations indicate that preservation of normal mesoglea structure is required for Hydra head regeneration to proceed.  相似文献   

17.
18.
The rate of proteoglycan synthesis by chondrocytes in vitro was depressed by either omitting l-glutamine from the incubation medium or by addition of proteoglycan subunit to the medium. The molecular size distribution on Sepharose 2B of the proteoglycan subunits synthesized by the chondrocytes under these conditions of reduced proteoglycan synthesis was found to be the same as those synthesized by the control cells. Likewise, the molecular size distribution on Sepharose 6B CL of the glycosaminoglycan chains synthesized by the depressed cells was found to be similar to that observed in untreated chondrocytes. This work demonstrates that, under conditions of reduced proteoglycan synthesis, fewer proteoglycan subunits are synthesized by chondrocytes and that the molecular size distribution of these macromolecules is similar to those synthesized by untreated cells.  相似文献   

19.
In order to study how adipose conversion affects the extracellular environment, levels of extracellular matrix (ECM) proteins during differentiation were analyzed by 125I-labeled antibody binding to each specific primary antibody. When confluent bovine intramuscular preadipocytes (BIP) were stimulated with adipogenic medium, there was a significant accretion on the cell surface of type I-VI collagens, laminin and fibronectin, compared with undifferentiated cells. The deposition amount of ECM proteins had reached near maximal levels at an early stage of differentiation and lasted throughout the culture. However, the increasing manners were not all the same in these eight proteins. Type V and type VI collagen tended to show a transient decline after the rapid rise at the beginning of stimulation, and fibronectin instead, subsequently decreased. Further analysis by immunocytochemical staining showed that remodeling occurred in type V and VI collagen matrices during this period; extensive fibrillar networks seen at 10 d after stimulation were quite unlike that formed earlier. These specific increases and development of matrix during adipocyte differentiation imply some significance for organizing fat lobules in each ECM proteins, especially type V and VI collagens.  相似文献   

20.
The potential of nanomelic chondrocytes to synthesize chondroitin sulfate was investigated by providing the mutant cells with p-nitrophenyl-beta-D-xyloside, a compound which acts as an artificial acceptor for glycosaminoglycan synthesis. Under these conditions the synthesis of chondroitin sulfate in nanomelic and normal chondrocytes is comparable. The chondroitin sulfate synthesized by the mutant is indistinguishable in molecular size and composition from that synthesized by similarly treated normal chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号