首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), a potent activator of Ca(2+)- and phospholipid-dependent protein kinase (C kinase), stimulates luteinizing hormone (LH) release from rat pituitary cells. The actions of TPA upon LH release were compared with those of the GnRH superagonist [D-Ala6] des-Gly10-GnRH N-ethylamide (GnRHa) in cultured pituitary cells. LH release was stimulated by 0.1 nM TPA and the maximum response at 10 nM TPA was 50% of the LH response to GnRHa. The ED50 values for TPA and GnRHa were 1.2 and 0.037 nM, respectively, and the maximum stimulatory effects of TPA and GnRHa on LH release were not additive. GnRHa-stimulated LH release was decreased by calmodulin (CaM) antagonists including pimozide, trifluoperazine, W5 and W7, being most effectively reduced (by 70%) by 10 microM pimozide. In contrast to their inhibition of GnRH action, these antagonists enhanced TPA-stimulated LH release, so that 10 microM pimozide and W7 doubled the maximum LH response. The potent GnRH antagonist [Ac-D-p-Cl-Phe1.2, D-Trp3, D-Lys6, D-Ala10]GnRH, which completely inhibited GnRHa-stimulated LH release with ID50 of 6.8 nM, also reduced maximum TPA-stimulated LH release by about 50%. These results suggest that both Ca2+/CaM and C kinase pathways are involved in the LH release mechanism, and indicate that C kinase plays a major role in the action of GnRH upon gonadotropin secretion. The synergism between CaM antagonists and TPA suggests that blockade of CaM-mediated processes leads to enhanced activation of the C kinase pathway, possibly by removal of an inhibitory influence. Furthermore, the partial inhibition of TPA-stimulated LH release by a GnRH antagonist suggests that the pathway(s), specifically connected with LH release in the diverse effects of C kinase, might be locked by the continuous receptor inactivation by antagonist and indicates the complicated pathways which diverge from the receptor and converge into specific cellular response.  相似文献   

2.
The feedback regulatory control mechanism exerted by activated Ca2+/phospholipid-dependent protein C kinase upon gonadotropin releasing hormone (GnRH) binding, stimulation of phosphoinositide turnover and gonadotropin secretion was investigated in cultured pituitary cells. Addition of the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), at concentrations which activate pituitary protein C kinase, to cultured pituitary cells resulted in up-regulation of GnRH receptors (155% at 4 h). The stimulatory effect of GnRH on [3H]inositol phosphates (Ins-P) production in myo-[2-3H]inositol prelabeled pituitary cells was not inhibited by prior treatment of the cells with TPA (10(-9)-10(-7) M). Higher concentrations of TPA (10(-6)-10(-5) M) inhibited the effect of GnRH on [3H]Ins-P production. Increasing concentrations of TPA or the permeable analog of diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) stimulated luteinizing hormone (LH) release from cultured pituitary cells with ED50 values of 5 x 10(-9) M and 10 micrograms/ml, respectively. No consistent inhibition or additivity of LH release was observed when increasing doses of TPA or OAG were added with a submaximal dose of GnRH. These results suggest that protein C kinase might mediate the known homologous up-regulation of GnRH receptors during the reproductive cycle. Protein C kinase is positively involved in mediating the process of gonadotropin secretion. Unlike many other systems, activation of protein C kinase in pituitary gonadotrophs is not involved in negative feed-back regulation of stimulus-secretion-coupling mechanisms in GnRH-stimulated gonadotrophs.  相似文献   

3.
The demonstration that GnRH provokes the accumulation of diacylglycerol and the redistribution of protein kinase C to the membrane fraction in gonadotropes suggests a role for this enzyme as a mediator of GnRH action. In the present work we have investigated the possibility that protein kinase C might mediate GnRH-stimulated receptor down-regulation and desensitization. Pretreatment of pituitary cells for 6 h with GnRH (10(-11) - 10(-6) M) caused a biphasic change in GnRH receptor number [the maximum binding (Bmax) for 125I-buserelin binding was increased by 10(-10) M GnRH and reduced by 10(-7) and 10(-6) M GnRH] and caused desensitization (pretreatment with 10(-9) - 10(-6) M GnRH reduced the proportion of cellular LH released in a subsequent challenge with GnRH). Pretreatment for 6 h with 0.2-200 nM phorbol myristate acetate (a protein kinase C-activating phorbol ester) did not cause desensitization, but at 200 nM, did reduce GnRH receptor number. As a further test of the requirement for protein kinase C for GnRH action, cells were depleted of all measurable protein kinase C (and rendered unresponsive to protein kinase C activators) by prior treatment with a high dose of phorbol myristate acetate (500 nM for 6 h followed by 12 h in plating medium). Depletion of protein kinase C did not alter the ability of GnRH to desensitize gonadotropes or down-regulate its own receptors. The demonstration that the effects of GnRH on receptor number and gonadotrope responsiveness are neither blocked by depletion of protein kinase C nor entirely mimicked by activation of protein kinase C suggests that these effects of the releasing hormone are not solely mediated by this enzyme.  相似文献   

4.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) caused phosphorylation of phosphoproteins of 56-kDa which co-migrated with and had identical pI values to subunits of tyrosine hydroxylase. The phosphorylation was closely correlated with an increase of [3H]3,4-dihydroxyphenylalanine (DOPA) production which is a reflection of increased tyrosine hydroxylase activity. Only those phorbol esters which activate protein kinase C induced phosphorylation of the 56-kDa proteins and increased [3H]DOPA production. Neither TPA-induced phosphorylation of the 56-kDa proteins nor TPA-induced enhancement of [3H] DOPA production required extracellular Ca2+. TPA caused increases in phosphorylation of the 56-kDa proteins and increases in [3H]DOPA production over similar concentration ranges (10-1000 nM). TPA did not increase cellular cAMP. The data suggest that phorbol ester-induced phosphorylation of intracellular tyrosine hydroxylase, possibly by protein kinase C, results in increased tyrosine hydroxylase activity.  相似文献   

5.
The receptor-binding properties and in vitro biological effects of a highly active gonadotropin-releasing hormone (GnRH) antagonist, [N-acetyl-D-p-chloro-Phe1,2D-Trp3,D-Lys6,D-Ala10]GnRH, were compared with those of the GnRH superagonist analog, [D-Ala6] des-Gly10-GnRH-N-ethylamide. In rat pituitary particles and isolated pituitary cells, the 125I-labeled GnRH antagonist showed saturable high-affinity binding (Ka v 8.4 +/- 1.4 X 10(9) M-1) to the same receptor sites which bound the GnRH agonist. The rate of dissociation of the receptor-bound antagonist from pituitary particles and cells was extremely slow in comparison with that of the agonist ligand. Also, dissociation of the antagonist analog was incomplete, with a residual fraction of tightly bound ligand that was proportional to the duration of preincubation. The [D-Lys6]GnRH antagonist prevented GnRH-induced luteinizing hormone release during static incubation and superfusion of cultured pituitary cells, but in contrast to the agonist did not cause desensitization of the gonadotroph. Although the antagonist caused a prolonged reduction in available GnRH receptor sites, this was attributable to persistent occupancy by the slowly dissociating ligand rather than to receptor loss. Autoradiographic analysis of [D-Lys6]GnRH-antagonist uptake by cultured pituitary cells revealed that the peptide remained bound at the cell membrane for up to 2 h, in contrast with the rapid endocytosis of GnRH agonists. The slow dissociation of receptor-bound antagonist was consistent with its ability to cause sustained blockade of GnRH actions, and its prolonged cell-surface location suggests that receptor activation is necessary to initiate the rapid internalization of hormone-receptor complexes that is a feature of the agonist-stimulated gonadotroph.  相似文献   

6.
The role of protein kinase C in luteinizing hormone (LH) release was analyzed in studies on the actions of phorbol esters and gonadotropin-releasing hormone (GnRH) in normal and protein kinase C (Ca2+/phospholipid-dependent enzyme)-depleted pituitary cell cultures. LH secretory responses of normal pituitary cells to GnRH were reduced but not abolished in Ca2+-deficient medium, consistent with the existence of extracellular Ca2+-dependent and -independent components of GnRH action. Both of these components could be elicited by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). The LH secretory responses to TPA and GnRH were additive only at low doses and converged to a common maximum at high concentrations of the agonists in the presence or absence of extracellular Ca2+. The release of stored LH by GnRH and TPA was accompanied by secretion of newly synthesized LH from 2 to 5 h during stimulation by either of the agonists. LH synthesis was increased in a progressive and dose-dependent manner by GnRH and TPA, and the ratio between newly synthesized and released hormone was near 1:2. TPA caused rapid and complete translocation of cytosolic protein kinase C to the particulate fraction of pituitary cells, followed by a progressive decrease in total enzyme content to approximately 10% after 6 h. Partial recovery of the cytosolic enzyme (to 20%) occurred after washing and reincubation for 15 h. Such kinase C-depleted cells showed prominent, dose-dependent reductions in the actions of GnRH and TPA on LH release and synthesis in both normal and Ca2+-deficient media. These observations support the hypothesis that protein kinase C participates in LH biosynthesis and secretion in pituitary gonadotrophs and is involved in the actions of GnRH upon these processes.  相似文献   

7.
Gonadotropin-releasing hormone (GnRH) stimulates release of pituitary gonadotropins by activating specific plasma membrane receptors. In the present studies, we have used activators of the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) to probe the binding characteristics of agonist- or antagonist-occupied GnRH receptors in intact cell cultures, using a radioligand receptor assay. Specific binding of [125I-Tyr5,D-Ser(tBu)6,Pro9,NHEt]GnRH (Buserelin), a high-affinity GnRH agonist, was increased to 180% of control in the presence of 150 nM phorbol 12-myristate 13-acetate (PMA) or 100 nM phorbol 12,13-dibutyrate (PDB), and to 125% of control in the presence of 200 microM 1,2-dioctanoylglycerol, after 20 min at 23 degrees C. The PMA effects were associated with apparent increases in both binding affinity and number of binding sites. The effects of protein kinase C activators on Buserelin binding were concentration- and time-dependent and were not seen with 4 alpha-PMA or 1,2-dioctanoyl-3-Cl-glycerol, neither of which activate protein kinase C. In contrast, PMA had no measurable effects on specific binding of a GnRH receptor antagonist, Ac[D-pCl-Phe1,2,D-Trp3,125I-Tyr5,D-Lys6,D-Ala10]GnRH. When cell cultures were pretreated with 100 nM PDB in the absence of GnRH and then washed to remove the phorbol ester, no effects of prior protein kinase C activation were detected upon subsequent addition of Buserelin. However, when PDB pretreatment was carried out in the presence of 0.3 microM GnRH, residual enhancement of Buserelin binding, but not antagonist binding, was observed at either 23 or 4 degrees C. The radiolabeled agonist activated, and the antagonist blocked, GnRH receptor-mediated luteinizing hormone release and [3H]inositol phosphate production in cells preloaded with [3H]inositol. These findings suggest that the action of protein kinase C on the GnRH receptor, either direct or indirect, requires the receptor to be in an activated (agonist-occupied) state but does not require receptor internalization. The mechanism of these effects on GnRH agonist binding is not known but may involve sequestration of surface receptors, expression of new receptors, and/or modulation of GnRH receptor affinity.  相似文献   

8.
In search of new selective antagonists and/or agonists for the human melanocortin receptor subtypes hMC1R to hMC5R to elucidate the specific biological roles of each GPCR, we modified the structures of the superagonist MT-II (Ac-Nle-c[Asp-His-D-Phe-Arg-Trp-Lys]-NH(2)) and the hMC3R/hMC4R antagonist SHU9119 (Ac-Nle-c[Asp-His-D-Nal(2')-Arg-Trp-Lys]-NH(2)) by replacing the His-d-Phe and His-d-Nal(2') fragments in MT-II and SHU9119, respectively, with Aba-Xxx (4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one-Xxx) dipeptidomimetics (Xxx=D-Phe/pCl-D-Phe/D-Nal(2')). Employment of the Aba mimetic yielded novel selective high affinity hMC3R and hMC3R/hMC5R antagonists.  相似文献   

9.
The demonstration that activators of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), such as phorbol esters and diacylglycerols, can provoke luteinizing hormone (LH) release from pituitary gonadotropes, suggests a possible role for protein kinase C in stimulus-release coupling. We now report that administration of phorbol myristate acetate (PMA) to pituitary cell cultures causes a sustained reduction in Triton X-100-extracted protein kinase C activity. Further, phorbol ester- and diacylglycerol-stimulated LH release, as well as inhibition by PMA of gonadotropin-releasing hormone (GnRH)-stimulated inositol phosphate production, were reduced by pretreatment with PMA. The effects of phorbol ester pretreatment on PMA-stimulated LH release and protein kinase C activity were dose-dependent, sustained (greater than or equal to 24 h) and specific (no measurable effect with 4 alpha-phorbol didecanoate). The effect on PMA-stimulated LH release was apparently Ca2+-independent. In pituitary cell cultures with reduced protein kinase C activity, the gonadotropes have reduced responsiveness to PMA but release a similar proportion of cellular LH in response to Ca2+-mobilizing secretagogues (GnRH and A23187) as do control cells. The normal responsiveness to GnRH of cells with reduced responsiveness to protein kinase C activators calls into question the requirement for this enzyme for GnRH-stimulated LH release.  相似文献   

10.
Gonadotropin-releasing hormone (GnRH) regulates pituitary gonadotropin release by a Ca2+-dependent mechanism involving receptor-mediated phosphoinositide hydrolysis. Previous studies indicate that activation of pituitary protein kinase C (PKC), while not required for acute gonadotropin release in response to GnRH, is likely involved in the chronic regulation of gonadotrope responsiveness. Studies from our laboratory have shown that activation of PKC by phorbol esters produces both the uncoupling of GnRH-stimulated phosphoinositide hydrolysis and the selective enhancement of GnRH agonist binding in pituitary cell cultures. In the present work, we have examined the possibility that these processes are related in mechanism. Dissociation of bound agonist radioligand at 23 degrees C was found to be reduced in the presence of phorbol esters, and ligand bound in the presence of phorbol ester was resistant to displacement by competing ligands at 4 degrees C. However, agonist bound in the presence of phorbol ester was dissociable by subsequently washing cells at pH 3. Receptor photoaffinity labeling studies confirmed that agonist association with membrane component(s) identified as the GnRH receptor was increased in the presence of phorbol ester. These results suggest that, in the presence of a phorbol ester PKC activator, agonist-occupied GnRH receptors remain at the cell surface, but are sequestered in some manner. In other experiments, cell preloaded with [3H]inositol were treated with GnRH agonist ligand and phorbol ester at 4 degrees C to form a pool of sequestered, agonist-occupied receptors, and then displaceable (nonsequestered) agonist was removed by incubation with antagonist ligand. After addition of LiCl and warming to 37 degrees C, [3H]inositol phosphate production (an index of phosphoinositide hydrolysis) in phorbol ester-treated cells was reduced to 67% of vehicle control, although residual specific agonist binding had been increased to greater than 300% of control. The appearance of sequestered receptors and inhibition of [3H]inositol phosphate production had similar phorbol ester concentration dependencies. These results suggest that the same agonist-occupied GnRH receptors sequestered as a result of PKC activation also are preferentially uncoupled from phosphoinositide hydrolysis.  相似文献   

11.
We have previously demonstrated that platelet-activating factor (PAF) binds specifically on cell membranes isolated from U937 cells. We now describe biological evidence showing that the effect of PAF on U937 cells is a receptor-mediated event. myo-[3H]Inositol-labeled U937 cells were used to investigate the possible role of phosphoinositide metabolism in these cells after binding of PAF. Formation of inositol phosphates (IP1, IP2, and IP3) in response to PAF was increased two- to threefold more than in vehicle control in U937 cells. The effect of PAF on endogenous protein phosphorylation was also studied by using 32PO4-labeled cells. PAF stimulates the phosphorylation of a 45-kDa protein in a time-dependent and dose-related fashion. Since the phospholipase C-generated diglyceride is an important activator of protein kinase C, the phosphorylated 45-kDa protein could be the substrate of protein kinase C. In this regard, we were able to demonstrate that phorbol ester enhances the phosphorylation of the same 45-kDa protein band. In addition, sphingosine, a protein kinase C inhibitor, inhibits the phosphorylation of the same 45-kDa protein band. Down-regulation of the protein kinase C also inhibits the 45-kDa protein phosphorylation. These results suggest that protein kinase C is involved in the PAF-U937 cell interaction.  相似文献   

12.
We previously demonstrated that the 27-kDa major component protein in rat liver gap junctions was phosphorylated by protein kinase C in vitro (Takeda, A. et al. (1987) FEBS Lett. 210, 169-172). In this study, we examined this further and examined the phosphorylation of the 27-kDa gap junction protein in rat hepatocytes by metabolically labeling cells with [32P]orthophosphate and using a monoclonal antibody to immunoprecipitate the protein. The in vitro phosphorylation was inhibited by monoclonal antibodies recognizing the carboxyl- (C-)terminal domain of the 27-kDa protein. Protease digestion analysis revealed that phosphorylation occurred at the C-terminal domain. In rat hepatocytes, the phorbol esters, 12-O-tetradecanoylphorbol-13-acetate and phorbol-12,13-dibutyrate, stimulated the 27-kDa protein phosphorylation, whereas 4 alpha-phorbol-12,13-didecanoate did not. 1-Oleoyl-2-acetyl-sn-glycerol also stimulated the 27-kDa protein phosphorylation. In addition, norepinephrine stimulated the phosphorylation and pretreatment of hepatocytes with staurosporine, a potent inhibitor of protein kinase C, inhibited this stimulatory effect of norepinephrine. Both in vitro and in hepatocytes, analysis of chemical cleavage of the 27-kDa phosphoprotein revealed that phosphorylation occurred mainly at a 10-kDa fragment which the antibodies recognized. These results indicate that protein kinase C phosphorylates the 27-kDa gap junction protein, not only in vitro but also in hepatocytes, at the C-terminal domain of the protein.  相似文献   

13.
Several forms of protein kinase C with molecular masses of 74-, 77-, and 80-kDa were detected in subcellular fractions of human breast cancer MDA-MB-231 cells which express the alpha-type protein kinase C. Several lines of evidence indicated that the 74-kDa is the precursor of the 77- and 80-kDa protein kinase C forms. (i) Pulse-labeling experiments revealed that protein kinase C is synthesized on membranes as a 74-kDa protein that can be chased into the 77- and the 80-kDa protein kinase C forms. (ii) The primary translation product of protein kinase C displayed an apparent molecular size of 74-kDa as determined by in vitro translation of poly(A)+ RNA from MDA-MB-231 cells. (iii) Incubation with serine/threonine-specific protein phosphatases (potato acid phosphatase and phosphatase 1 or 2A) resulted in the complete dephosphorylation of the 77-kDa to the 74-kDa protein kinase C form. Protein kinase C appears to be synthesized in membranes as an unphosphorylated and presumably inactive 74-kDa form that is converted into the active 77- and 80-kDa protein kinase C by post-translational modification involving at least two phosphorylation steps. The first phosphorylation is probably achieved by a specific, yet unidentified, "protein kinase C kinase" since the 74-kDa protein kinase C species did not undergo autophosphorylation and was neither a substrate for the purified protein kinase C, S6 kinase, phosphorylase kinase, casein kinase II, nor for the catalytic subunit of cAMP-dependent protein kinase. Except for phosphorylase kinase and the catalytic subunit of the cAMP-dependent protein kinase, phosphorylation of the 77-kDa protein kinase C form with purified protein kinase C (autophosphorylation), S6 kinase or casein kinase II shifted the molecular mass of the 77-kDa protein kinase C to 80-kDa. Prolonged exposure of MDA-MB-231 cells to phorbol 12-myristate 13-acetate not only leads to a complete down-regulation of protein kinase C activity but also to an accumulation of 74-kDa protein kinase C due to a retarded conversion of the 74-kDa into the 77- and 80-kDa protein kinase C forms in these cells. Our data indicate that tumor promoters additionally interfere with the posttranslational processing that converts the 74-kDa protein kinase C precursor into the 77- and 80-kDa forms of the enzyme.  相似文献   

14.
We have used digitonin permeabilization to study the mechanism of bombesin-induced activation of protein kinase C in Swiss 3T3 cells. Protein kinase C-mediated phosphorylations in permeabilized cells were identified using phorbol esters and diacylglycerols. Addition of phorbol 12,13-dibutyrate (PDBu) in the presence of [gamma-32P]ATP and digitonin caused a marked and rapid time- and dose-dependent increase in the phosphorylation of an Mr 80,000 cellular protein (maximum stimulation = 12.6 +/- 1.6-fold after 1 min, EC50 = 27 nM). 1-oleoyl-2-acetylglycerol substituted for PDBu in stimulating the phosphorylation of Mr 80,000 protein (EC50 = 13 microM). Bombesin also caused a striking increase in the phosphorylation of Mr 80,000 protein with a time course similar to that observed with PDBu. This phosphorylation was mimicked by mammalian bombesin-like peptides and blocked by the bombesin antagonists [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P and [Leu13 psi (CH2NH)Leu14]bombesin. Down-regulation of protein kinase C in intact cells by prolonged exposure to PDBu prevented Mr 80,000 protein phosphorylation upon subsequent bombesin addition in digitonin-permeabilized cells. Comigration on one- and two-dimensional gel electrophoresis and phosphopeptide mapping confirmed that the Mr 80,000 protein phosphorylated in permeabilized cells was indistinguishable from the Mr 80,000 protein which is the major protein kinase C substrate in intact cells. The GDP analogue guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) caused a 70% inhibition of the bombesin-induced phosphorylation of Mr 80,000 protein but had no effect on the phosphorylation induced by PDBu. Bombesin stimulated Mr 80,000 protein phosphorylation in permeabilized cells in a dose-dependent manner (EC50 = 4 nM), and GDP beta S shifted the bombesin dose response curve to higher bombesin concentrations (EC50 = 14 nM). These results demonstrate for the first time a growth factor receptor-mediated activation of protein kinase C in permeabilized cells and provide functional evidence for the involvement of a G protein in the transmembrane signaling pathway that mediates the stimulation of protein kinase C by bombesin in Swiss 3T3 cells.  相似文献   

15.
The hypothalamic decapeptide, gonadotropin-releasing hormone (GnRH), utilizes multiple signaling pathways to activate extracellularly regulated mitogen-activated protein kinases (ERK1/2) in normal and immortalized pituitary gonadotrophs and transfected cells expressing the GnRH receptor. In immortalized hypothalamic GnRH neurons (GT1-7 cells), which also express GnRH receptors, GnRH, epidermal growth factor (EGF), and phorbol 12-myristate 13-acetate (PMA) caused marked phosphorylation of ERK1/2. This action of GnRH and PMA, but not that of EGF, was primarily dependent on activation of protein kinase C (PKC), and the ERK1/2 responses to all three agents were abolished by the selective EGF receptor kinase inhibitor, AG1478. Consistent with this, both GnRH and EGF increased tyrosine phosphorylation of the EGF receptor. GnRH and PMA, but not EGF, caused rapid phosphorylation of the proline-rich tyrosine kinase, Pyk2, at Tyr(402). This was reduced by Ca(2+) chelation and inhibition of PKC, but not by AG1478. GnRH stimulation caused translocation of PKC alpha and -epsilon to the cell membrane and enhanced the association of Src with PKC alpha and PKC epsilon, Pyk2, and the EGF receptor. The Src inhibitor, PP2, the C-terminal Src kinase (Csk), and dominant-negative Pyk2 attenuated ERK1/2 activation by GnRH and PMA but not by EGF. These findings indicate that Src and Pyk2 act upstream of the EGF receptor to mediate its transactivation, which is essential for GnRH-induced ERK1/2 phosphorylation in hypothalamic GnRH neurons.  相似文献   

16.
Epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA) stimulated mouse embryo palate mesenchyme (MEPM) cells to incorporate [32P]O(3-)4 into a protein with an apparent molecular weight of 80 kDa, in vitro. Agents known to elevate intracellular levels of cyclic AMP did not stimulate phosphorylation of this phosphoprotein. Since there is a significant amount of evidence obtained with other cells indicating that phosphorylation of such an 80-kDa phosphoprotein reflects specifically the activation of protein kinase C in response to PMA and other agents, including mitogens, these findings raise the possibility that EGF may activate protein kinase C in MEPM cells.  相似文献   

17.
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.  相似文献   

18.
Pasteurella multocida toxin, either native or recombinant (rPMT), is an extremely effective mitogen for Swiss 3T3 cells and acts at picomolar concentrations (Rozengurt, E., Higgins, T. E., Chanter, N., Lax, A. J., and Staddon, J. M. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 123-127). Here, we show that similar concentrations of rPMT markedly stimulated the phosphorylation of an acidic 80-kDa protein in [32P]Pi-labeled Swiss 3T3 cells. Co-migration on one- and two-dimensional gels and phosphopeptide analysis indicated that this phosphoprotein was indistinguishable from 80K, a known protein kinase C substrate. In parallel cultures, the stimulation of 80K phosphorylation by rPMT (5-10-fold) was comparable to that induced by bombesin or phorbol dibutyrate (PBt2). However, the increase in phosphorylation by rPMT occurred after a pronounced lag period (1-3 h, depending upon the concentration of rPMT) in contrast to the relatively immediate stimulation by PBt2 or bombesin. Early, but not late, addition of either PMT antiserum or the lysosomotrophic agent methylamine selectively inhibited 80K phosphorylation in response to rPMT. 80K phosphorylation persisted after removal of free toxin and was not inhibited by cycloheximide. It appears that rPMT enters the cells via an endocytotic pathway to initiate and perpetuate events leading to 80K phosphorylation. rPMT, like PBt2, also stimulated the phosphorylation of 87-kDa and 33-kDa proteins in Swiss 3T3 cells. Phosphorylation of the 80K and 87-kDa proteins by rPMT or PBt2 were greatly attenuated in cells depleted of protein kinase C. In contrast, phosphorylation of the 33-kDa protein by rPMT, but not by PBt2, persisted in the absence of protein kinase C. rPMT, like bombesin, caused a translocation of protein kinase C to the cellular particulate fraction. The toxin enhanced the cellular content of diacylglycerol. rPMT also caused a time- and dose-dependent decrease in the binding of 125I-epidermal growth factor to its receptor which was blocked by methylamine and dependent only in part upon the presence of protein kinase C. We conclude that rPMT stimulates protein kinase C-dependent and -independent protein phosphorylation in Swiss 3T3 cells.  相似文献   

19.
The ability of gonadotropin releasing hormone (GnRH) to elevate cellular levels of mRNA for beta-subunit of luteinizing hormone (LH) has been examined in monolayer cultures from rat pituitary. Low concentrations of GnRH (100 pM) induced a 6.8-fold increase in LH-beta mRNA, while higher concentrations of GnRH were less effective. The low concentrations of GnRH (100 pM) did not result in altered GnRH receptor levels (92 +/- 12% compared to controls) after 24 h treatment but did increase protein kinase C activity to 249 +/- 16%. The protein kinase C activator, phorbol 12-myristate 13-acetate, at concentrations (2-20 nM) which did not deplete protein kinase C, stimulated LH-beta mRNA levels 2-5-fold after 24 h. Higher concentrations of phorbol 12-myristate 13-acetate, which depleted protein kinase C activity, substantially reduced the ability of 100 pM GnRH to stimulate increases in LH-beta mRNA levels. As previously observed, protein kinase C-depleted cells exhibited normal LH release in response to GnRH stimulation. These studies demonstrate that low concentrations of GnRH may have an important role in regulation of gonadotropin biosynthesis. Furthermore, the results suggest that activation of protein kinase C is sufficient to stimulate increases in LH-beta mRNA levels and that protein kinase C is necessary for normal GnRH stimulation of LH-beta mRNA levels. Accordingly, we postulate that protein kinase C may mediate the action of GnRH on LH-beta mRNA levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号