首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cephalic salivary glands of some species of bees are exclusive and well developed only in Apinae. These glands were studied with light and scanning electron microscopy in workers, queens and males from the honey bee Apis mellifera, and the stingless bee Scaptotrigona postica in different life phases. The results show that the cephalic salivary glands are present in females of both the species, and in males of S. postica. Nevertheless, they are poorly developed in young males of A. mellifera. In both species, gland growth is progressive from the time of emergence to the oldest age but, in A. mellifera males, the gland degenerates with age. Scanning electron microscopy shows that the secretory units of newly emerged workers are collapsed while in older workers they are turgid. Some pits on the surface of the secretory units correspond to open intercellular spaces. The possible functions of these glands in females and males of both species are discussed.  相似文献   

2.
Colonies of the honey bee, Apis mellifera, consist of males and two female castes: workers and queens. The castes and males from A. mellifera have a distinct morphology, physiology and behaviour that correlate with their roles in the society and are characterized by some brain polymorphisms. Compound eyes are one of the characteristics that differ among the castes and sexes. A. mellifera is a holometabolous insect; therefore, the development of adult organs during metamorphosis, which will produce these differences, requires the precise coordination of three main programmed cellular processes: proliferation, differentiation and death. These processes take place simultaneously during pupation. Our purpose was to investigate cell division and death in the optic lobes (OL) of workers, queens and males during pupation to identify how the differences in the compound eyes in adults of these classes are achieved. The results showed that OL differentiation follows a similar pattern in the three classes of individuals studied, without structural differences in their development. The main non-structural differences involve cell division, mortality rates and timing. The results suggest a modelling of the brain during differentiation, which contributes to the specific functions of each individual class.  相似文献   

3.
Queen, worker, and male production was studied for 1 year in three queenright colonies of Tetragonisca angustula (Latreille). We sampled brood combs monthly and noticed that the number of brood cells and production of individuals were similar among colonies. Although the production of queens did not vary significantly, the frequencies of workers, males, and the number of cells among the combs varied over time. The production of males was highly seasonal, occurring mostly from February to April, coinciding with the period of intense brood cells production, when colonies produced more males and less workers, resulting in a negative correlation. Although the frequency of queens has not varied in time, the seasonal availability of males affected the mating frequency and the time spent since emergence until fertilization of queens. In the T. angustula colonies studied, the population dynamics was highly seasonal and the mating success depended of male production, according to the season.  相似文献   

4.
Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre‐emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker‐produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over‐represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well‐timed sons.  相似文献   

5.
Nestmate recognition in Apis cerana and Apis mellifera was studied by introducing sealed queen cells heterospecifically between queenless colonies. No A. cerana queens were accepted by queenless A. mellifera; but A. mellifera queens were accepted in queenless A. cerana colonies. A. mellifera queens oviposited in queenless A. cerana colonies, but A. cerana workers removed most eggs. In time, egg removals declined, and some A. mellifera larvae that hatched from these eggs reached adulthood, and eventually about half of the workers were newly emerged A. mellifera. Eventually, the colonies consisted only of A. mellifera after A. cerana workers died by attrition. A. mellifera workers are more sensitive to nestmate recognition and killed the A. cerana virgin queens. In mixed-species colonies, after newly emerged A. mellifera workers matured, they removed eggs laid by the A. cerana queens until there were no workers to replace the old ones.  相似文献   

6.
Scent marking is widespread among individuals of Mammalia species, especially in resource defence social systems. Apart from urine and faeces that are used for claiming resource ownership, specialised scent glands are the main source of secretions in scent marking individuals. Most previous studies have described secretory epithelia macroscopically, since many glands are conspicuous. But macroscopically inconspicuous scent glands or morphological structures might then be overlooked. In Saccopteryx bilineata (greater sac-winged bat), behavioural observations suggest that both sexes have, apart from the conspicuous gular glands of males, specialised facial glands to display territorial marking. We investigated the facial glands of two males and one female S. bilineata histologically and found, first, that both sexes possess a bilateral symmetrically intermandibular gland, which is composed of a bed of modified apocrine sudoriferous cells. Second, we found lip glands consisting of modified apocrine sudoriferous cell units with pigmented ducts around the upper and the lower lip. Both gland types are probably involved during territorial marking.  相似文献   

7.
Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations – two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species‐specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one‐third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact.  相似文献   

8.
We estimated queen mating frequency, genetic relatedness among workers, and worker reproduction in Vespa crabro flavofasciata using microsatellite DNA markers. Of 20 colonies examined, 15 contained queens inseminated by a single male, 3 colonies contained queens inseminated by two males, and 2 colonies contained queens inseminated by three males. The genetic relatedness among workers was estimated to be 0.73±0.003 (mean±SE). For this high relatedness, kin selection theory predicts a potential conflict between queens and workers over male production. To verify whether males are derived from queens or workers, 260 males from 13 colonies were genotyped at four microsatellite loci. We found that all of the males were derived from the queens. This finding was further supported by the fact that only 33 of 2,990 workers dissected had developed ovaries. These workers belonged to 2 of the 20 colonies. There was no relationship between queen mating frequency and worker reproduction, and no workers produced male offspring in any of the colonies. These results suggest that male production dominated by queens in V. crabro flavofasciata is possibly due to worker policing.  相似文献   

9.
In social insects, reproduction is often monopolized by queens even though in many species are workers capable of laying male eggs. Because it is difficult to see how one or a few queens can suppress the much more numerous workers, collective worker control, or policing, offers an attractive solution. When workers are less related to other workers than they are to queens, workers should be selected to suppress each other in favor of the queen's male offspring, if other things are equal. Otherwise, they should allow each other to lay male eggs. For two species of Polistes, we used DNA microsatellites to estimate these two relatednesses, to determine the sex of brood, and to determine whether male brood was produced by queens or workers. Workers were significantly more related to each other (0.63 and 0.73 for P. bellicosus and P. dorsalis, respectively) than they were to queens (0.40 and 0.54, respectively) so they were predicted to allow each other to lay the male eggs. However, workers did not lay male-destined eggs in either species, so the results do not support collective worker control. There are two possible explanations for this result. Queens may be able to physically dominate in these small colonies. Alternatively, this may be a conventional settlement that minimizes conflict and the attendant costs.  相似文献   

10.
Abstract Vitellogenin (Vg) is an egg yolk protein that is produced primarily in the fat body of most female insects. In the advanced social structure of eusocial honeybees, the presence of the queen inhibits egg maturation in the workers’ ovaries. However in the stingless bee Melipona quadrifasciata, the workers always develop ovaries and lay a certain amount of eggs while provisioning the brood cells with larval food during what is known as the worker nurse phase. The present work is a comparative study of the presence of Vg in homogenates of the fat bodies and ovaries of the nurse workers, and the virgin and physogastric queens of M. quadrifasciata. The presence of Vg was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunoblotting using Apis mellifera anti‐egg antibody. Vg was not detected in the fat bodies or ovaries of the workers, but it was found in the ovaries of virgin and physogastric queens and in the fat body of physogastric queens. The results are discussed, taking into account the reproductive state of the individuals and the other possible roles of Vg, such as a storage protein for metoabolism of other organs.  相似文献   

11.
Honeybee workers (Apis mellifera) with a short postcapping stage in their development are partially resistant against theVarroa mite. Selection of sexual reproductives, with a short postcapping stage offers a possibility to establish genetic lines withVarroa-resistant worker brood. Particularly the use of selected drones in the procedure allows for rapid genetic progress. They have a large phenotypic variance for the duration of the postcapping stage and the evaluation of the breeding value is more precise than for queens because of the male haploidy.  相似文献   

12.
In social insects, cuticular hydrocarbons are involved in species, kin, caste and nestmate recognition. Gas chromatography and mass spectrometry were used to compare the cuticular hydrocarbon composition of workers, males and queens of Melipona bicolor. The cuticular hydrocarbon composition of this species was found to consist mainly of C23, C25:1, C25, C27:1, C27, C29:1 and C29, which are already present in imagoes that have not yet abandoned the brood cell. This composition varied quantitatively and qualitatively between and within the castes and sexes. The newly emerged workers and young queens (virgins) had similar cuticular hydrocarbon profiles, which were different from those of the males. When the females start executing their tasks in the colony, the cuticular hydrocarbon profile differences appear. The workers have less variety, while the queens conserve or increase the number of cuticular hydrocarbon compounds. The queens have more abdominal tegumentary glands than the workers, which apparently are the source of the new cuticular compounds.  相似文献   

13.
Besides the common labial and metapleural glands, four novel exocrine glands are described in the thorax of both workers and queens of the ponerine ant Myopias hollandi. From anterior to posterior, these glands were designated as the propleural pit gland, the posterolateral pronotal gland, the anterolateral propodeal gland and the metasternal process gland. They all correspond with class-3 glands, that are made up of bicellular units that each comprise a secretory cell and a duct cell. In the propleural pit gland, the ducts are characterized by a gradually widening diameter, while in the three other glands the ducts show a portion which displays a balloon-like expansion, that on semithin sections stains very dark. For none of these novel glands the function is known as yet, although ultrastructural examination indicates that they produce a non-proteinaceous and therefore possibly pheromonal secretion.  相似文献   

14.
Thelytokous parthenogenesis, or the asexual production of female offspring, is rare in the animal kingdom, but relatively common in social Hymenoptera. However, in honeybees, it is only known to be ubiquitous in one subspecies of Apis mellifera, the Cape honeybee, A. mellifera capensis. Here we report the appearance of queen cells in two colonies of the Eastern honeybee Apis cerana that no longer contained a queen or queen-produced brood to rear queens from. A combination of microsatellite genotyping and the timing of the appearance of these individuals excluded the possibility that they had been laid by the original queen. Based on the genotypes of these individuals, thelytokous production by natal workers is the most parsimonious explanation for their existence. Thus, we present the first example of thelytoky in a honeybee outside A. mellifera. We discuss the evolutionary and ecological consequences of thelytoky in A. cerana, in particular the role thelytoky may play in the recent invasions by populations of this species.  相似文献   

15.
Sexual competition during colony reproduction in army ants   总被引:1,自引:0,他引:1  
We review the unusual processes of sexual reproduction and colony fission in army ants and briefly compare this to reproduction in other ants.
Army ants are a polyphyletic group and are characterized by a syndrome of convergently evolved traits including large colony size, group foraging for large prey, nomadism, cyclical brood production and queens who are large and wingless. Because queens are flightless and never leave their colony, workers are in a position to choose which queen will take over each new colony. Males fly between colonies and must run the gauntlet of the workers in alien ones before they can approach the queen. For this reason, workers can also choose which males will inseminate their queen.
Army ant workers may therefore be involved in choosing both the matriarch and patriarch of new colonies. We suggest that this unusual form of sexual selection has led to the close resemblance of conspecific males and females in all the separate lineages of army ants. Males are queen-like in that they are large and robust, have long cylindrical abdomens, with exocrine glands of similar form and location to those of females and shed their wings when they enter new colonies. Furthermore, when males enter new colonies they are followed by an entourage of workers which resemble those that accompany queens. We suggest that males resemble queens not as a form of deceitful mimicry but because under the influence of sexual selection they have come to use the same channels of communication to demonstrate their potential fitness to the workforce as those used by queens.  相似文献   

16.
Summary The electrophoretical protein patterns of hypopharyngeal glands, larval food ofMelipona, and royal jelly ofApis were compared.Since protein patterns of hypopharyngeal glands from newly emerged workers, brood cell provisioners and foragers are similar to freshly deposited larval food, the identical protein bands probably represent actual gland secretion. This suggests that, as inApis, the glands secrete proteins to the larval food, and maintain this ability throughout life, although at slightly different intensities, according to the activity of the bees.The similarity on the electrophoretic profiles of the major larval food protein inApis andMelipona is an interesting finding because of its probable evolutionary significance.  相似文献   

17.
We examined how queens of the primitively eusocial wasp, Polistes fuscatus, stimulate foraging by workers in 10 small, post-worker-emergence field colonies. We experimentally increased colony needs, including needs of the brood, by removing a colony's most active foragers (thereby decreasing the colony's foraging rate), and found that the queen significantly increased both her level of activity and rate of aggressive interactions. Most aggressive interactions were directed at dominant workers. Removal of a colony's least active foragers, however, produced no such effect. Our results, together with those of Reeve & Gamboa (1983, 1987), indicate that queens are sensitive to brood needs, and that they behaviorally regulate worker foraging to match brood needs by increasing their level of activity and rate of aggressive interactions.  相似文献   

18.
Summary In primitively eusocial wasps workers often retain the ability to become queens, so their continued performance in the worker role is partly dependent on elevated genetic relatedness between workers and the brood they rear. In colonies of the social wasp,Mischocyttarus mexicanus, workers were related to female pupae by 0.29±0.12, a value that is significantly below the full sister value of 0.75, but not significantly below 0.50, worker relatedness to daughters. Though individuals often build new nests within meters of their natal nest, there was no genetic population structure discernable among four nest clusters, or inbreeding of any kind.  相似文献   

19.
Summary: This work investigated Augochloropsis iris, its annual colony cycle, brood size and survival rate, caste differentiation, and sex ratio, and is the first detailed account of a clearly eusocial species of this genus. The population studied is located in the Campos do Jordão State Park, São Paulo, Brazil. The annual colony cycle extends from August to March and consists of three phases of cell provisioning separated by two phases of inactivity, and followed by an emergence of future queens and males. Provisioning during the first phase is carried primarily out by solitary females. The daughters, after emerging from the cells, remain in the natal nests, carrying out foraging activities, while the mother engages in reproduction. New nests are initiated during each of the provisioning phases by solitary females, principally by females from the second-phase brood which, soon after emerging from the cells, leave their natal nests to found their own nests, which they provision during the third phase. The females resulting from the third-phase brood in general mate and excavate their own nests, in which they diapause, with provisioning delayed until the following August. On average, the queens are significantly larger (5%) than the workers. In general, the workers do not have developed ovaries, but all are mated. Kin selection can be accepted as the selective force responsible for worker behavior of A. iris in eusocial colonies when the queen has mated once and semisocial colonies if the queen mated only once. The percentage of males produced in the first, second and third broods and in the brood of new nests founded by solitary females active in the second and third phases was: 20.7%, 22.2%, 13.3% and 0.0% respectively. The resultant sex ratio of the third brood suggests that the third-phase workers of eusocial nests are at least in partial control of their colony's sex ratios, in cases where the queens mated only once.  相似文献   

20.
Summary A thriving, polygynous, and probably overwintered colony of the western yellowjacket,Vespula pensylvanica, was collected on 2 November 1994 in Riverside, southern California, and examined in detail. The colony had 14 combs, of combined area 1.30 m2 containing 55,704 small and 10,266 large cells. There were 17 functional, physogastric queens, 70 newly emerged non-reproductive queens, 7300 adult workers, 685 adult males, and c. 17,600 capped cells containing pupae or fully-fed larvae. Dissections of 200 workers showed that none had well-developed ovaries. Hypotheses for the rarity of polygyny inVespula are put forward and evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号