首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because the chemokine receptor CCR5 is expressed on Th1 CD4(+) cells, it is important to investigate the expression and function of this receptor on other T cells involved in Th1 immune responses, such as Ag-specific CD8(+) T cells, which to date have been only partially characterized. Therefore, we analyzed the expression and function of CCR5 on virus-specific CD8+ T cells identified by HLA class I tetramers. Multicolor flow cytometry analysis demonstrated that CCR5 is expressed on memory (CD28+CD45RA-) and effector (CD28-CD45RA- and CD28-CD45RA+) CD8+ T cells but not on naive (CD28+CD45RA+) CD8+ T cells. CCR5 expression was much lower on two effector CD8+ T cells than on memory CD8+ T cells. Analysis of CCR7 and CCR5 expression on the different types of CD8+ T cells showed that memory CD8+ T cells have three phenotypic subsets, CCR5+CCR7-, CCR5+CCR7+, and CCR5-CCR7+, while naive and effector CD8+ T cells have CCR5-CCR7+ and CCR5+CCR7- phenotypes, respectively. These results suggest the following sequence for differentiation of memory CD8+ T cells: CCR5-CCR7+-->CCR5+CCR7+-->CCR5+CCR7-. CCR5+CD8+ T cells effectively migrated in response to RANTES, suggesting that CCR5 plays a critical role in the migration of Ag-specific effector and differentiated memory CD8+ T cells to inflammatory tissues and secondary lymphoid tissues. This is in contrast to CCR7, which functions as a homing receptor in migration of naive and memory CD8+ T cells to secondary lymphoid tissues.  相似文献   

2.
Regulation of IL-17 in human CCR6+ effector memory T cells   总被引:1,自引:0,他引:1  
IL-17-secreting T cells represent a distinct CD4(+) effector T cell lineage (Th17) that appears to be essential in the pathogenesis of numerous inflammatory and autoimmune diseases. Although extensively studied in the murine system, human Th17 cells have not been well characterized. In this study, we identify CD4(+)CD45RO(+)CCR7(-)CCR6(+) effector memory T cells as the principal IL-17-secreting T cells. Human Th17 cells have a unique cytokine profile because the majority coexpress TNF-alpha but not IL-6 and a minor subset express IL-17 with IL-22 or IL-17 and IFN-gamma. We demonstrate that the cytokines that promote the differentiation of human naive T cells into IL-17-secreting cells regulate IL-17 production by memory T cells. IL-1beta alone or in association with IL-23 and IL-6 markedly increase IL-17(+) CCR6(+) memory T cells and induce IL-17 production in CCR6(-) memory T cells. We also show that T cell activation induces Foxp3 expression in T cells and that the balance between the percentage of Foxp3(+) and IL-17(+) T cells is inversely influenced by the cytokine environment. These studies suggest that the cytokine environment may play a critical role in the expansion of memory T cells in chronic autoimmune diseases.  相似文献   

3.
Chemokines and their receptors fulfill specialized roles in inflammation and under homeostatic conditions. CCR7 and its ligands, CCL19 and CCL21, are involved in lymphocyte recirculation through secondary lymphoid organs and additionally navigate lymphocytes into distinct tissue compartments. The role of CCR7 in the migration of polarized T effector/memory cell subsets in vivo is still poorly understood. We therefore analyzed murine and human CD4(+) cytokine-producing cells developed in vivo for their chemotactic reactivity to CCR7 ligands. The responses of cells producing cytokines, such as IFN-gamma, IL-4, and IL-10, as well as of subsets defined by memory or activation markers were comparable to that of naive CD4(+) cells, with slightly lower reactivity in cells expressing IL-10 or CD69. This indicates that CCR7 ligands are able to attract naive as well as the vast majority of activated and effector/memory T cell stages. Chemotactic reactivity of these cells toward CCL21 was absent in CCR7-deficient cells, proving that effector cells do not use alternative receptors for this chemokine. Th1 cells generated from CCR7(-/-) mice failed to enter lymph nodes and Peyer's patches, but did enter a site of inflammation. These findings indicate that CD4(+) cells producing effector cytokines upon stimulation retain the capacity to recirculate through lymphoid tissues via CCR7.  相似文献   

4.
IL-17-producing CD4(+) Th (Th17) cells are a unique subset of proinflammatory cells expressing the retinoic acid-related orphan receptor γt and associated with different forms of inflammatory autoimmune pathologies. The development of Th17 cells, mediated by TGF-β and IL-1, is closely related to that of FOXP3(+) suppressor/regulatory T cells (Treg). In this study, we report that ex vivo expression of IL-1RI in human circulating CD4(+) T cells identifies a subpopulation of FOXP3(+) Treg that coexpress retinoic acid-related orphan receptor γt, secrete IL-17, and are highly enriched among CCR7(+) central memory cells. Consistent with the concept that IL-1RI expression in Treg identifies a subpopulation at an early stage of differentiation, we show that, in Th17 populations differentiated in vitro from natural naive FOXP3(+) Treg, IL-1RI(+) IL-17-secreting cells are central memory cells, whereas IL-1RI(-) cells secreting IL-17 are effector memory cells. Together with the absence of detectable IL-1RI and IL-17 expression in resting naive CD4(+) T cells, these data identify circulating CCR7(+) Treg expressing IL-1RI ex vivo as early intermediates along an IL-1-controlled differentiation pathway leading from naive FOXP3(+) Treg to Th17 effectors. We further show that, whereas IL-1RI(+) central memory Treg respond to stimulation in the presence of IL-1 by generating IL-17-secreting effectors, a significant fraction of them maintain FOXP3 expression, consistent with an important role of this population in maintaining the Treg/Th17 memory pool in vivo.  相似文献   

5.
The chemokine receptor CCR9 is expressed on most small intestinal lamina propria and intraepithelial lymphocytes and on a small subset of peripheral blood lymphocytes. CCR9-expressing lymphocytes may play an important role in small bowel immunity and inflammation. We studied the phenotype and functional characteristics of CCR9(+) lymphocytes in blood from normal donors. A subset of CCR9(+) T cells have a phenotype of activated cells and constitutively express the costimulatory molecules CD40L and OX-40. In contrast to CCR9(-), CCR9(+)CD4(+) peripheral blood T cells proliferate to anti-CD3 or anti-CD2 stimulation and produce high levels of IFN-gamma and IL-10. IL-10-producing cells were exclusively detected within the CCR9(+) subset of CD4(+) T cells by intracellular staining and were distinct from IL-2- and IFN-gamma-producing cells. Moreover, memory CCR9(+)CD4(+) lymphocytes respond to CD2 stimulation with proliferation and IFN-gamma/IL-10 production, whereas memory CCR9(-)CD4(+) cells were unresponsive. In addition, memory CCR9(+)CD4(+) T cells support Ig production by cocultured CD19(+) B cells in the absence of prior T cell activation or addition of exogenous cytokines. Our data show that the memory subset of circulating CCR9(+)CD4(+) T cells has characteristics of mucosal T lymphocytes and contains cells with either Th1 or T-regulatory 1 cytokine profiles. Studies on the cytokine profile and Ag specificity of this cell subset could provide important insight into small intestinal immune-mediated diseases and oral tolerance in humans.  相似文献   

6.
Extensive replicative capacity of human central memory T cells   总被引:3,自引:0,他引:3  
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.  相似文献   

7.
After TCR cross-linking, naive CD4(+)CD45RA(+) T cells switch to the expression of the CD45RO isoform and acquire effector functions. In this study we have shown that cAMP-elevating agents added to anti-CD3- and anti-CD28-stimulated cultures of T lymphocytes prevent acquisition of the CD45RO(+) phenotype and lead to the generation of a new subpopulation of primed CD4(+)CD45RA(+) effector cells (cAMP-primed CD45RA). These cells displayed a low apoptotic index, as the presence of dibutyryl cAMP (dbcAMP)-rescued cells from CD3/CD28 induced apoptosis. Inhibition of CD45 splicing by dbcAMP was not reverted by addition of exogenous IL-2. cAMP-primed CD45RA cells had a phenotype characteristic of memory/effector T lymphocytes, as they showed an up-regulated expression of CD2, CD44, and CD11a molecules, while the levels of CD62L Ag were down-regulated. These cells also expressed the activation markers CD30, CD71, and HLA class II Ags at an even higher level than CD3/CD28-stimulated cells in the absence of dbcAMP. In agreement with this finding, cAMP-primed CD45RA cells were very efficient in triggering allogenic responses in a MLR. In addition, cAMP-primed CD45RA cells produce considerable amounts of the Th2 cytokines, IL-4, IL-10, and IL-13, whereas the production of IFN-gamma and TNF-alpha was nearly undetectable. The elevated production of IL-13 by neonatal and adult cAMP-primed CD45RA cells was specially noticeable. The cAMP-dependent inhibition of CD45 splicing was not caused by the production of immunosuppressor cytokines. These results suggest that within the pool of CD4(+)CD45RA(+) cells there is a subpopulation of effector lymphocytes generated by activation in the presence of cAMP-elevating agents.  相似文献   

8.
Progressive HIV disease has been associated with loss of memory T cell responses to Ag. To better characterize and quantify long-lived memory T cells in vivo, we have refined an in vivo labeling technique to study the kinetics of phenotypically distinct, low-frequency CD8(+) T cell subpopulations in humans. HIV-negative subjects and antiretroviral-untreated HIV-infected subjects in varying stages of HIV disease were studied. After labeling the DNA of dividing cells with deuterated water ((2)H(2)O), (2)H-label incorporation and die-away kinetics were quantified using a highly sensitive FACS/mass spectrometric method. Two different populations of long-lived memory CD8(+) T cells were identified in HIV-negative subjects: CD8(+)CD45RA(-)CCR7(+)CD28(+) central memory (T(CM)) cells expressing IL-7Ralpha and CD8(+)CD45RA(+)CCR7(-)CD28(-) RA effector memory (T(EMRA)) cells expressing CD57. In pilot studies in HIV-infected subjects, T(CM) cells appeared to have a shorter half-life and reduced abundance, particularly in those with high viral loads; T(EMRA) cells, by contrast, retained a long half-life and accumulated in the face of progressive HIV disease. These data are consistent with the hypothesis that IL-7Ralpha(+) T(CM) cells represent true memory CD8(+) T cells, the loss of which may be responsible in part for the progressive loss of T cell memory function during progressive HIV infection.  相似文献   

9.
10.
It has been proposed that expression of the chemokine receptor CCR7 represents a defining factor for nonpolarized central (CCR7(+)) and polarized effector memory (CCR7(-)) T cells. In this study, we have tested this hypothesis using in vivo-activated T cells from P14 and SMARTA TCR-transgenic (tg) mice specific for MHC class I- and II-restricted epitopes of the lymphocytic choriomeningitis virus (LCMV) glycoprotein. CCR7 cell surface expression on TCR-tg cells was monitored with a CC chemokine ligand 19-Ig fusion protein. CC chemokine ligand 19-Ig staining separated TCR-tg cells activated by LCMV infection into CCR7(-) and CCR7(+) effector/memory T cell populations. Nonetheless, both T cell populations isolated from spleen and liver produced identical amounts of IFN-gamma after short-term Ag stimulation. Furthermore, CCR7(+) and CCR7(-) CD8 TCR-tg cells from LCMV-infected mice exhibited similar lytic activity against LCMV peptide-coated target cells. These results question the proposed concept of differential effector cell function of CCR7(+) and CCR7(-) memory T cells.  相似文献   

11.
12.
13.
The voltage-gated Kv1.3 K(+) channel in effector memory T cells serves as a new therapeutic target for multiple sclerosis. In our previous studies, the novel peptide ADWX-1 was designed and synthesized as a specific Kv1.3 blocker. However, it is unclear if and how ADWX-1 alleviates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. In this study, the administration of ADWX-1 significantly ameliorated the rat experimental autoimmune encephalomyelitis model by selectively inhibiting CD4(+)CCR7(-) phenotype effector memory T cell activation. In contrast, the Kv1.3-specific peptide had little effect on CD4(+)CCR7(+) cells, thereby limiting side effects. Furthermore, we determined that ADWX-1 is involved in the regulation of NF-κB signaling through upstream protein kinase C-θ (PKCθ) in the IL-2 pathway of CD4(+)CCR7(-) cells. The elevated expression of Kv1.3 mRNA and protein in activated CD4(+)CCR7(-) cells was reduced by ADWX-1 engagement; however, an apparent alteration in CD4(+)CCR7(+) cells was not observed. Moreover, the selective regulation of the Kv1.3 channel gene expression pattern by ADWX-1 provided a further and sustained inhibition of the CD4(+)CCR7(-) phenotype, which depends on the activity of Kv1.3 to modulate its activation signal. In addition, ADWX-1 mediated the activation of differentiated Th17 cells through the CCR7(-) phenotype. The efficacy of ADWX-1 is supported by multiple functions, which are based on a Kv1.3(high) CD4(+)CCR7(-) T cell selectivity through two different pathways, including the classic channel activity-associated IL-2 pathway and the new Kv1.3 channel gene expression pathway.  相似文献   

14.
Li L  Qiao D  Fu X  Lao S  Zhang X  Wu C 《PloS one》2011,6(5):e20165
Important advances have been made in the immunodiagnosis of tuberculosis (TB) based on the detection of Mycobacterium tuberculosis (MTB)-specific T cells. However, the sensitivity and specificity of the immunological approach are relatively low because there are no specific markers for antigen-specific Th cells, and some of the Th cells that do not produce cytokines can be overlooked using this approach. In this study, we found that MTB-specific peptides of ESAT-6/CFP-10 can stimulate the expression of CD40L specifically in CD4(+) T cells but not other cells from pleural fluid cells (PFCs) in patients with tuberculous pleurisy (TBP). CD4(+)CD40L(+) but not CD4(+)CD40L(-) T cells express IFN-γ, IL-2, TNF-α, IL-17 or IL-22 after stimulation with MTB-specific peptides. In addition, CD4(+)CD40L(+) T cells were found to be mostly polyfunctional T cells that simultaneously produce IFN-γ, IL-2 and TNF-α and display an effector or effector memory phenotype (CD45RA(-)CD45RO(+)CCR7(-)CD62L(-)ICOS(-)). To determine the specificity of CD4(+)CD40L(+) T cells, we incubated PFCs with ESTA-6/CFP-10 peptides and sorted live CD4(+)CD40L(+) and CD4(+)CD40L(-) T cells by flow cytometry. We further demonstrated that sorted CD4(+)CD40L(+), but not CD4(+)CD40L(-) fractions, principally produced IFN-γ, IL-2, TNF-α, IL-17 and IL-22 following restimulation with ESTA-6/CFP-10 peptides. Taken together, our data indicate that the expression of CD40L on MTB-specific CD4(+) T cells could be a good marker for the evaluation and isolation of MTB-specific Th cells and might also be useful in the diagnosis of TB.  相似文献   

15.
Li L  Qiao D  Fu X  Lao S  Zhang X  Wu C 《PloS one》2011,6(8):e23700
Th1 cell-mediated immune responses at the site of active infection are important to restrict the growth of M. tuberculosis (MTB) and for the spontaneous resolution of patients with tuberculous pleurisy (TBP). In the present study, we found that without any stimulation, CD4(+) T cells in pleural fluid cells (PFCs) from patients with TBP expressed significantly higher levels of CD69 than PBMCs from patients with tuberculosis (TB) or healthy donors. CD4(+)CD69(+) T cells expressed T-bet and IL-12Rβ2. After stimulation with MTB-specific antigens, CD4(+)CD69(+) T cells expressed significantly higher levels of IFN-γ, IL-2 and TNF-α than CD4(+)CD69(-) T cells, demonstrating that CD4(+)CD69(+) T cells were MTB-specific Th1 cells. In addition, CD4(+)CD69(+) T cells were mostly polyfunctional Th1 cells that simultaneously produced IFN-γ, IL-2, TNF-α and displayed an effector or effector memory phenotype (CD45RA(-)CCR7(-)CD62L(-)CD27(-)). Moreover, the percentages of CD4(+)CD69(+) T cells were significantly and positively correlated with polyfunctional T cells. Interestingly, sorted CD4(+)CD69(+) but not CD4(+)CD69(-) fractions by flow cytometry produced IFN-γ, IL-2 and TNF-α that were significantly regulated by CD4(+)CD25(+) Treg cells. Taken together, based on the expression of CD69, we found a direct quantitative and qualitative method to detect and evaluate the in vivo generated MTB-specific polyfunctional CD4(+) T cells in PFCs from patients with TBP. This method can be used for the potential diagnosis and enrichment or isolation of MTB-specific Th1 cells in the investigations.  相似文献   

16.
IL-7 plays important roles in development and homeostatic proliferation of lymphocytes. IL-7 uses a receptor composed of IL-7Ralpha (CD127) and the common gamma-chain (CD132) to transmit its signal. It has been unknown how CD127 is regulated during Th cell differentiation to the B cell-helping T cell lineage. In this study, we report that loss of CD127 defines terminally differentiated B cell-helping effector T cells in human tonsils. Although naive CD4(+) T cells uniformly express CD127, the memory/effector (non-FOXP3(+)) CD4(+) T cells are divided into CD127(+) and CD127(-) cells. The CD127(-) T cells are exclusively localized within the germinal centers where B cells become plasma and memory B cells, whereas CD127(+) T cells are found in T cell areas and the area surrounding B cell follicles. Consistently, the CD127(-) T cells highly express the B cell zone homing receptor CXCR5 with concomitant loss of CCR7. Compared with CD127(+) memory T cells, CD127(-) T cells have considerably shorter telomeres, do not proliferate in response to IL-7, and are prone to cell death. The CD127(-) T cells produce a large amount of the B cell follicle-forming chemokine CXCL13 upon stimulation with B cells and Ags. Most importantly, they are highly efficient in helping B cells produce Igs of all isotypes in a manner dependent on CD40L and ICOS and inducing activation-induced cytidine deaminase and Ig class switch recombination. The selective loss of CD127 on the B cell-helping effector T cells would have implications in regulation and termination of Ig responses.  相似文献   

17.
Differentiation of CD8(+) T cells at the tumor site toward effector and memory stages may represent a key step for the efficacy of antitumor response developing naturally or induced through immunotherapy. To address this issue, CD8(+) T lymphocytes from tumor-invaded (n = 142) and tumor-free (n = 42) lymph nodes removed from the same nodal basin of melanoma patients were analyzed for the expression of CCR7, CD45RA, perforin, and granzyme B. By hierarchical cluster analysis, CD8(+) T cells from all tumor-free lymph nodes and from 56% of the tumor-invaded lymph node samples fell in the same cluster, characterized mainly by CCR7(+) CD45RA(+/-) cytotoxic factor(-) cells. The remaining three clusters contained only samples from tumor-invaded lymph nodes and showed a progressive shift of the CD8(+) T cell population toward CCR7(-) CD45RA(-/+) perforin(+) granzyme B(+) differentiation stages. Distinct CD8(+) T cell maturation stages, as defined by CCR7 vs CD45RA and by functional assays, were identified even in melanoma- or viral Ag-specific T cells from invaded lymph nodes by HLA tetramer analysis. Culture for 7 days of CCR7(+) perforin(-) CD8(+) T cells from tumor-invaded lymph nodes with IL-2 or IL-15, but not IL-7, promoted, mainly in CCR7(+)CD45RA(-) cells, proliferation coupled to differentiation to the CCR7(-) perforin(+) stage and acquisition of melanoma Ag-specific effector functions. Taken together, these results indicate that CD8(+) T cells differentiated toward CCR7(-) cytotoxic factor(+) stages are present in tumor-invaded, but not in tumor-free, lymph nodes of a relevant fraction of melanoma patients and suggest that cytokines such as IL-2 and IL-15 may be exploited to promote Ag-independent maturation of anti-tumor CD8(+) T cells.  相似文献   

18.
Y Sato  S Nagata  M Takiguchi 《PloS one》2012,7(8):e42776
Humanized mice are expected to be useful as small animal models for in vivo studies on the pathogenesis of infectious diseases. However, it is well known that human CD8(+) T cells cannot differentiate into effector cells in immunodeficient mice transplanted with only human CD34(+) hematopoietic stem cells (HSCs), because human T cells are not educated by HLA in the mouse thymus. We here established HLA-B*51:01 transgenic humanized mice by transplanting human CD34(+) HSCs into HLA-B*51:01 transgenic NOD/SCID/Jak3(-/-) mice (hNOK/B51Tg mice) and investigated whether human effector CD8(+) T cells would be elicited in the mice or in those infected with HIV-1 NL4-3. There were no differences in the frequency of late effector memory and effector subsets (CD27(low)CD28(-)CD45RA(+/-)CCR7(-) and CD27(-)CD28(-)CD45RA(+/-)CCR7(-), respectively) among human CD8(+) T cells and in that of human CD8(+) T cells expressing CX3CR1 and/or CXCR1 between hNOK/B51Tg and hNOK mice. In contrast, the frequency of late effector memory and effector CD8(+) T cell subsets and of those expressing CX3CR1 and/or CXCR1 was significantly higher in HIV-1-infected hNOK/B51Tg mice than in uninfected ones, whereas there was no difference in that of these subsets between HIV-1-infected and uninfected hNOK mice. These results suggest that hNOK/B51Tg mice had CD8(+) T cells that were capable of differentiating into effector T cells after viral antigen stimulation and had a greater ability to elicit effector CD8(+) T cells than hNOK ones.  相似文献   

19.
The role of Th17 cells in cancer patients remains unclear and controversial. In this study, we have analyzed the phenotype of in vitro primed Th17 cells and further characterized their function on the basis of CCR4 and CCR6 expression. We show a novel function for a subset of IL-17-secreting CD4(+) T cells, namely, CCR4(+)CCR6(+)Th17 cells. When cultured together, CCR4(+)CCR6(+)Th17 cells suppressed the lytic function, proliferation, and cytokine secretion of both Ag-specific and CD3/CD28/CD2-stimulated autologous CD8(+) T cells. In contrast, CCR4(-)CCR6(+) CD4(+) T cells, which also secrete IL-17, did not affect the CD8(+) T cells. Suppression of CD8(+) T cells by CCR4(+)CCR6(+)Th17 cells was partially dependent on TGF-β, because neutralization of TGF-β in cocultures reversed their suppressor function. In addition, we also found an increase in the frequency of CCR4(+)CCR6(+), but not CCR4(-)CCR6(+) Th17 cells in peripheral blood of hepatocellular carcinoma patients. Our study not only underlies the importance of analysis of subsets within Th17 cells to understand their function, but also suggests Th17 cells as yet another immune evasion mechanism in hepatocellular carcinoma. This has important implications when studying the mechanisms of carcinogenesis, as well as designing effective immunotherapy protocols for patients with cancer.  相似文献   

20.
CD4 Th cells producing the proinflammatory cytokine IL-17 (Th17) have been implicated in a number of inflammatory arthritides including the spondyloarthritides. Th17 development is promoted by IL-23. Ankylosing spondylitis, the most common spondyloarthritis (SpA), is genetically associated with both HLA-B27 (B27) and IL-23R polymorphisms; however, the link remains unexplained. We have previously shown that B27 can form H chain dimers (termed B27(2)), which, unlike classical HLA-B27, bind the killer-cell Ig-like receptor KIR3DL2. In this article, we show that B27(2)-expressing APCs stimulate the survival, proliferation, and IL-17 production of KIR3DL2(+) CD4 T cells. KIR3DL2(+) CD4 T cells are expanded and enriched for IL-17 production in the blood and synovial fluid of patients with SpA. Despite KIR3DL2(+) cells comprising a mean of just 15% of CD4 T in the peripheral blood of SpA patients, this subset accounted for 70% of the observed increase in Th17 numbers in SpA patients compared with control subjects. TCR-stimulated peripheral blood KIR3DL2(+) CD4 T cell lines from SpA patients secreted 4-fold more IL-17 than KIR3DL2(+) lines from controls or KIR3DL2(-) CD4 T cells. Strikingly, KIR3DL2(+) CD4 T cells account for the majority of peripheral blood CD4 T cell IL-23R expression and produce more IL-17 in the presence of IL-23. Our findings link HLA-B27 with IL-17 production and suggest new therapeutic strategies in ankylosing spondylitis/SpA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号