首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ultrastructure of tachyzoites, bradyzoites and tissue cysts of the NC-1, NC-5 and NC-Liverpool strains of Neospora caninum are reviewed and compared with those of the VEG and ME-49 strains of Toxoplasma gondii. While each stage of N. caninum and T. gondii shared many ultrastructural characteristics, each parasite stage also had certain features or organelles that could be used to distinguish the two parasites. Some of the most prominent ultrastructural differences occurred in the number, appearance and location of rhoptries, looped-back rhoptries, micronemes, dense granules, small dense granules and micropores. The tissue cysts of both parasites were also basically similar, being surrounded by a cyst wall and not compartmentalised by septa. The cyst wall of N. caninum was irregular and substantially thicker, 0.5-4 microm, than those of T. gondii which were smooth and 0.5 microm thick.  相似文献   

2.
Tissue cyst formation by a goat isolate (GT-1) of Toxoplasma gondii was examined in bovine monocyte, human fetal lung, and Madin-Darby bovine kidney cell cultures. Transmission electron microscopy (TEM) and cat feeding studies indicated that tissue cysts were present in all 3 cell lines examined. Tissue cysts were first seen 3 days postinoculation (PI) using TEM. Standard cell culture procedures were used and no additional condition was needed to induce tissue cyst formation. Cats fed cell cultures excreted T. gondii oocysts in their feces 5-7 days PI. These oocysts caused lethal infections in mice. Tissue cysts were produced in cell cultures regardless if the initiating inoculum consisted of bradyzoites, sporozoites, or a mixture of bradyzoites and tachyzoites. Tissue cyst formation has been followed through 40 subpassages of infected cells. By TEM tissue cysts still were present after 40 passages, but when 40th-passaged cultures were fed to cats, oocytsts were not excreted. This indicates that the parasite had become oocystless after repeated passage in vitro.  相似文献   

3.
We have cloned the hexokinase [E.C. 2.7.1.1] gene of Toxoplasma gondii tachyzoite and obtained an active recombinant enzyme with a calculated molecular mass of 51,465Da and an isoelectric point of 5.82. Southern blot analysis indicated that the hexokinase gene existed as a single copy in the tachyzoites of T. gondii. The sequence of T. gondii hexokinase exhibited the highest identity (44%) to that of Plasmodium falciparum hexokinase and lower identity of less than 35% to those of hexokinases from other organisms. The specific activity of the homogeneously purified recombinant enzyme was 4.04 micromol/mg protein/min at 37 degrees C under optimal conditions. The enzyme could use glucose, fructose, and mannose as substrates, though it preferred glucose. Adenosine triphosphate was exclusively the most effective phosphorus donor, and pyrophosphate did not serve as a substrate. K(m) values for glucose and adenosine triphosphate were 8.0+/-0.8 microM and 1.05+/-0.25mM, respectively. No allosteric effect of substrates was observed, and the products, glucose 6-phosphate and adenosine diphosphate, had no inhibitory effect on T. gondii hexokinase activity. Other phosphorylated hexoses, fructose 6-phosphate, trehalose 6-phosphate which is an inhibitor of yeast hexokinase, and pyrophosphate, also did not affect T. gondii hexokinase activity. Native hexokinase activity was recovered in both the cytosol and membrane fractions of the whole lysate of T. gondii tachyzoites. This result suggests that T. gondii hexokinase weakly associates with the membrane or particulate fraction of the tachyzoite cell.  相似文献   

4.
The infective tachyzoite form of the protozoan Toxoplasma gondii is able to penetrate into vertebrate host cells and to survive and multiply within a cytoplasmic vacuole known as the parasitophorous vacuole. Previous observations, confirmed in the present study, showed that extracellular, but not intravacuolar, tachyzoites are labeled with rhodamine 123, a dye that specifically binds to functional mitochondria, which present a high transmembrane potential. These observations led to the suggestion that intravacuolar tachyzoites do not possess functional mitochondria. However, our present observations using the new dye CMXRos and observation by confocal laser scanning microscopy (CLSM) showed that the mitochondria of both extracellular and intravacuolar tachyzoites were intensely labeled, indicating that they were functional. In addition, cytochrome c activity could be cytochemically detected in the inner mitochondrial membrane of intravacuolar tachyzoites. Three-dimensional reconstruction of serial optical sections of CMXRos-stained tachyzoites observed by CLSM and of serial thin sections examined by transmission electron microscopy revealed that the protozoan presented only one ramified mitochondrion, reinforcing previous observations by Seeber et al. (1998, Exp. Parasitol. 89, 137-139) Petitprez and Vivier (1972, Protistologica VIII, 199-221).  相似文献   

5.
6.
Rhoptries have been isolated from Toxoplasma gondii tachyzoites by subcellular fractionation in isopynic density sucrose gradient. Five bands were observed, and transmission electron microscopy of these indicated that rhoptries were in band 3. This band had a density of 1.17 g/cm(3). Fraction 1 had membrane structures of the parasite. Fraction 2 contained membranes and mitochondria. Fraction 4 had mostly conoid structure and fraction 5 showed ghosts. The electrophoretic and Western blotting analysis of the fractions indicated the presence of a number of proteins. Iscoms were constructed from band 3, which contained the rhoptry structures. Iscom showed a only protein incorporated of 55 kDa. Isolation of the parasite organelles has got in this work is necessary to identification, characterization, and function elucidation of the organelle proteins.  相似文献   

7.
Since we had previously demonstrated the protective role played by Toxoplasma excreted-secreted antigens, the aim of the present work was to produce monoclonal antibodies directed against these antigens in order to determine if their localization in the parasite is compatible with a mechanism of excretion or secretion. Western immunoblotting analysis revealed three monoclonal antibodies (TG17-179, TG17-43, and TG17-113) raised against excreted-secreted antigens of 28.5, 27, and 21 kDa, respectively. The TG17-179 which reacts with antigens isolated by Concanavalin A affinity chromatography is directed against a glycosylated 28.5-kDa component. Colloidal immunogold labeling showed the ultrastructural localization of the 21-, 27-, and 28.5-kDa antigens in the matrix of the dense granules of tachyzoites and associated with the microvilli network of the parasitophorous vacuole, after host cell invasion. These observations suggest the following mechanism of Toxoplasma secretion: secreted antigens are first stored in tachyzoite-dense granules and are then released inside the parasitophorous vacuole. Among the secretory molecules characterized here, the native 27-kDa antigen recognized by TG17-43 is a calcium-binding protein found to be intermixed with the 21- and 28.5-kDa antigens inside the dense granules and hence could play a role in the packaging of secretory products. In addition, the 21- and 28.5-kDa antigens were also located beneath the parasite plasma-lemma. This particular location could reflect a transient step characteristic of T. gondii secretion.  相似文献   

8.
Aspartic proteases are important virulence factors for pathogens and are recognized as attractive drug targets. Seven aspartic proteases (ASPs) have been identified in Toxoplasma gondii genome. Bioinformatics and phylogenetic analyses regroup them into five monophyletic groups. Among them, TgASP1, a coccidian specific aspartic protease related to the food vacuole plasmepsins, is associated with the secretory pathway in non-dividing cells and relocalizes in close proximity to the nascent inner membrane complex (IMC) of daughter cells during replication. Despite a potential role for TgASP1 in IMC formation, the generation of a conventional knockout of the TgASP1 gene revealed that this protease is not required for T. gondii tachyzoite survival or for proper IMC biogenesis.  相似文献   

9.
Parasite differentiation is commonly associated with transitions between complex life cycle stages and with long-term persistence in the host, and it is therefore critical for pathogenesis. In the protozoan parasite Toxoplasma gondii, interconversion between rapidly growing tachyzoites and latent encysted bradyzoites is accompanied by numerous morphological and metabolic adaptations. In order to explore early cell biological events associated with this differentiation process, we have exploited fluorescent reporter proteins targeted to various subcellular locations. Combining these markers with efficient in vitro differentiation and time-lapse video microscopy provides a dynamic view of bradyzoite development in living cultures, demonstrating subcellular reorganization, maintenance of the mitochondrion, and missegregation of the apicoplast. Bradyzoites divide asynchronously, using both endodyogeny and endopolygeny, and are highly motile both within and between host cells. Cysts are able to proliferate without passing through an intermediate tachyzoite stage, via both the migration of free bradyzoites and the fission of bradyzoite cysts, suggesting a mechanism for dissemination during chronic infection.  相似文献   

10.
Lectins and neoglycoproteins labeled with colloidal gold particles were used for the ultrastructural localization of carbohydrate residues and sugar-binding sites, respectively, in thin sections of tachyzoites of Toxoplasma gondii embedded in the Lowicryl K4M resin. Incubation of the sections in the presence of gold-labeled Canavalia ensiformis (Con A), Arachis hypogaea (PNA), Ricinus communis I (RCA I), Triticum vulgaris (WGA), and Limax flavus (LFA) agglutinins showed significant labeling of the rhoptries. However, no labeling of the parasite's surface was observed. Incubation of tachyzoites in the presence of gold-labeled albumin-N-acetyl-D-glucosamine or albumin-galactose, but not in the presence of albumin-mannose, led to labeling of the rhoptries in a pattern similar to that observed with the lectins. The results obtained are discussed in relation to the possible role played by secretion of rhoptry macromolecules during the process of T. gondii-host cell interaction.  相似文献   

11.
Toxoplasma gondii is an intracellular parasite. It has been thought that T. gondii can disseminate throughout the body by circulation of tachyzoite-infected leukocytes (intracellular parasite) in the blood flow. However, a small number of parasites exist as free extracellular tachyzoites in the blood flow (extracellular parasite). It is still controversial whether the extracellular parasites in the blood flow disseminate into the peripheral tissues. In this study, we evaluated the dissemination efficiency of the extracellular and intracellular parasites in the blood flow using GFP-expressing transgenic parasite (PLK/GFP) and DsRed Express-expressing transgenic parasite (PLK/RED). When PLK/GFP and PLK/RED tachyzoites were injected, as intracellular and extracellular forms respectively, at the same time into the tail vein of a mouse, many disseminated green fluorescent PLK/GFP tachyzoites were observed in the lung, the spleen, the liver and the brain. However, only a few red fluorescent PLK/RED tachyzoites were detected in these organs. When PLK/GFP and PLK/RED tachyzoites were injected in the opposite manner, that is, as extracellular and intracellular forms respectively, the majority of tachyzoites in these tissues were PLK/RED tachyzoites. Collectively, these results indicate that intracellular tachyzoites mainly disseminate throughout the body and that extracellular tachyzoites hardly contribute to parasite dissemination.  相似文献   

12.
Toxoplasma gondii Korean isolate (KI-1) tachyzoites were inoculated intraduodenally to BALB/c mice using a silicon tube, and the course of infection and immune responses of mice were studied. Whereas control mice, that were infected intraperitoneally, died within day 7 post-infection (PI), the intraduodenally infected mice survived until day 9 PI (infection with 1 × 10(5) tachyzoites) or day 11 PI (with 1 × 10(6) tachyzoites). Based on histopathologic (Giemsa stain) and PCR (B1 gene) studies, it was suggested that tachyzoites, after entering the small intestine, invaded into endothelial cells, divided there, and propagated to other organs. PCR appeared to be more sensitive than histopathology to detect infected organs and tissues. The organisms spread over multiple organs by day 6 PI. However, proliferative responses of splenocytes and mesenteric lymph node (MLN) cells in response to con A or Toxoplasma lysate antigen decreased significantly, suggesting immunosuppression. Splenic CD4(+) and CD8(+) T-lymphocytes showed decreases in number until day 9 PI, whereas IFN-γ and IL-10 decreased slightly at day 6 PI and returned to normal levels by day 9 PI. No TNF-α was detected throughout the experimental period. The results showed that intraduodenal infection with KI-1 tachyzoites was successful but did not elicit significant mucosal immunity in mice and allowed dissemination of T. gondii organisms to systemic organs. The immunosuppression of mice included reduced lymphoproliferative responses to splenocytes and MLN cells to mitogen and low production of cytokines, such as IFN-γ, TNF-α, and IL-10, in response to T. gondii infection.  相似文献   

13.
The ultrastructural characterisitics of four types of Toxoplasma gondii schizonts (types B, C, D and E) and their merozoites, microgamonts and macrogamonts were compared in cats killed at days 1, 2, 4 and 6 after feeding tissues cysts from the brains of mice. Schizonts, merozoites and gamonts contained most of the ultrastructural features characteristic of the phylum Apicomplexa. All four types of schizonts developed within enterocytes or intraepithelial lymphocytes. Occasionally, type B and C schizonts developed within enterocytes that were displaced beneath the epithelium into the lamina propria. Type D and E schizonts and gamonts developed exclusively in the epithelium. Tachyzoites occurred exclusively within the lamina propria. Type B schizonts formed merozoites by endodyogeny, whereas types C to E developed by endopolygeny. The parasitophorous vacuoles surrounding type B and C schizonts consisted of a single membrane, whereas those surrounding types D and E schizonts were comprised of two to four electron-dense membranes. The parasitophorous vacuole of type B schizonts had an extensive tubulovesicular membrane network (TMN); the TMN was reduced or absent in type C schizonts and completely absent in types D and E schizonts and gamonts. Type B merozoites were ultrastructurally similar to tachyzoites, except that they were slightly larger. Type C merozoites exhibited a positive periodic acid-Schiff reaction by light microscopy and ultrastructurally contained amylopectin granules. Rhoptries were labyrinthine in type B merozoites but were electron-dense in types C-E. The development of microgamonts, macrogamont and oocysts is also described.  相似文献   

14.
Toxoplasma gondii infects cells through dynamic events dependent on actin. Although the presence of cortical actin has been widely suggested, visualisation and localisation of actin filaments has not been reported. The subpellicular cytoskeleton network is a recently described structure possibly involved in the dynamic events. Using non-ionic detergent extractions, the cortical cytoskeleton network was enriched and used for the isolation and identification of actin. Actin was detected by Western blots in extracts of cytoskeleton networks, and it was localised by gold staining in the network and in both the apical end and the posterior polar ring. Actin was isolated from subpellicular cytoskeleton extracts by binding to DNase I, and it polymerised in vitro as filaments that were gold-decorated by a monoclonal anti-actin antibody. Filaments bound the subfragment 1 of heavy meromyosin, although with atypical arrangements in comparison with the arrowheads observed in muscle actin filaments. Treatment with cytochalasin D and colchicine altered the structural organisation of the subpellicular network indicating the participation of actin filaments and microtubules in the maintenance of its structure. Actin filaments and microtubules, in the subpellicular network, participate reciprocally in the maintaining of the parasite's shape and the gliding motility.  相似文献   

15.
《Cell host & microbe》2022,30(2):232-247.e6
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
  相似文献   

16.
Protein profiles of two isolates of Neospora caninum (KBA-2 and JPA1) and Toxoplasma gondii RH strain were investigated by proteomic approach. Approximately, 78% of protein spots on two-dimensional gel electrophoresis (2-DE) profiles and 80% of antigen spots on 2-DE immunoblotting profiles were exhibited to share the same pI and M(r) between KBA-2 and JPA1 of N. caninum. On the other hand, a total of 30 antigen spots of T. gondii were recognized on 2-DE immunoblotting profile using rabbit antiserum against N. caninum KBA-2. A number of homologue proteins, such as heat shock protein 70, tubulin alpha- and beta-chain, putative protein disulfide isomerase, actin, enolase and 14-3-3 protein homologue are believed as the conserved proteins in both N. caninum and T. gondii. On the contrary, NcSUB1, NcGRA2 and NCDG1 (NcGRA7) might be the species-specific proteins for N. caninum tachyzoites. The present study showed that the high degree of similarity between N. caninum isolates (KBA-2 and JPA1), whereas large differences between N. caninum and T. gondii were noticed by proteome comparisons.  相似文献   

17.
Infectivity of bradyzoites of the VEG strain of Toxoplasma gondii was compared in cats and mice. For this, tissue cysts were separated from brains of infected mice using a Percoll gradient, and bradyzoites were released by incubation in acidic pepsin solution. After filtration through a 3-microm filter, bradyzoites were counted and diluted 10-fold in RPMI tissue culture medium. Dilutions estimated to have 1, 10, 100, and 1,000 bradyzoites were fed to cats and inoculated into mice, orally or subcutaneously (s.c.). Three experiments were performed. In experiment 1, 2 of 2 cats fed 1,000 bradyzoites, 1 of 2 cats fed 100 bradyzoites, 1 of 4 cats fed 10 bradyzoites, and 1 of 4 cats fed 1 bradyzoite shed millions of oocysts; 1,000 bradyzoites were infective to all 4 inoculated mice s.c. but not to 4 mice inoculated orally, and 100 bradyzoites were infective to 2 of 4 mice injected s.c. but not to 4 mice inoculated orally. All 16 mice (8 oral, 8 s.c.) injected with 1 or 10 bradyzoites were negative for T. gondii. In experiment 2, 1 of 4 cats fed 10 counted bradyzoites shed oocysts; the same inocula were not infective to 4 mice injected s.c. In experiment 3, 3 of 4 cats fed 1,000 bradyzoites shed oocysts and the inocula were infective to 10 of 10 mice s.c. and 4 of 10 mice orally; 4 of 4 cats fed 100 bradyzoites shed oocysts and the inocula were infective to 6 of 10 mice s.c. and 0 of 10 mice orally; 10 bradyzoites were not infective to cats and mice. Results indicate that bradyzoites are more infective to cats than to mice, and cats can shed millions of oocysts after ingesting just a few bradyzoites.  相似文献   

18.
Toxoplama gondii (Apicomplexa: Coccidia), an obligatory intracellular parasite with a unique capacity to invade virtually all nucleated cell type from warm-blooded vertebrate hosts. Despite the efficiency with which Toxoplasma enters its host cell, it remains unresolved if invasion occurs by direct penetration of the parasite or through phagocytosis. In the present work, electron microscopic study was designed to examine the entry process of Toxoplasma (RH strain) into macrophages and non phagocytic-host cells (Hela cells) and to observe the ultrastructure changes associated with intracellular parasitism. The results showed that both active invasion and phagocytosis were occurred and revealed that invasion is an ordered process that initiates with binding of the parasite at its apical end followed by tight-fitting invagination of the host cell membrane and a prominent constriction in the parasite at the site of penetration. The process ended by the professional parasitophorous vacuole that is distinct at the outset from those formed by phagocytosis in which once Toxoplasma triggered, phagocytic uptake can proceed by capture of the parasite within a loose fitting vacuole formed by localized membrane ruffling. The cytopathic effects of the parasite on macrophages and Hela cells were demonstrated within 5–15 h post-inoculation in the form of degenerative mitochondria, swelling Golgi apparatus and widening of endoplasmic reticulum indicating intracellular oedema. These changes were exaggerated and several cells were found dead after 48–72 h.  相似文献   

19.
20.
Highly virulent Toxoplasma gondii tachyzoite multiplication was recorded on the 4th and 5th days post cultivation (dpc) in seven selected cell lines either with or without fetal calf serum (FCS) in the maintenance media. The multiplication rate was slightly lower in the absence of FCS. The cell line mono-layers collapsed dying by the 6th day of infection both in presence or absence of FCS at 37 degrees C. Carcinoma of human larynx (Hep2) and Madian Darby Bovine Kidney (MDBK) cell lines were the most suitable for in vitro multiplication, followed by that of African green monkey kidney cells (VERO), pooled kidney from 1-day-old hamster (BHK), rabbit kidney cells (RK13) and human rhabdomyosarcoma (RDA), while Chicken embryo cells (CER) were the least suitable. In absence of FCS, CER, BHK, Hep2, RDA and MDBK were able to maintain virulent tachyzoites at +4 degrees C for 14 days. The infectivity of the tachyzoites was however lower, killing 40% of the inoculated mice. Tachyzoites survived at room temperature, in the dark, for 14 days in Hep2, RDA and MDBK. However, Hep2 was the only one able to keep virulent tachyzoites until 21 dpc at room temperature and at +4 degrees C. Hep2 propagated tachyzoites were still alive but with low infectivity up to 28 dpc. The cell-lines failed to support the development of tachyzoites after 7 dpc at 37 degrees C and after the 35 dpc at lower temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号