首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

2.
Previously unknown aspects in the life cycle of the freshwater flagellate Gonyostomum semen (Ehrenb.) (Raphidophyceae) are described here. This species forms intense blooms in many northern temperate lakes, and has increased in abundance and frequency in northern Europe during the past decades. The proposed life cycle is based on observations of life cycle stages and transitions in cultures. Viable stages of the life cycle were individually isolated and monitored by time‐lapse photography. The most common processes undertaken by the isolated cells were: division, fusion followed by division, asexual cyst formation, and sexual cyst formation. Motile cells divided by two different processes. One lasted between 6 and 24 h and formed two cells with vegetative cell size and with or without the same shape. The second division process lasted between 10 and 20 min and formed two identical cells, half the size of the mother cell. Planozygotes formed by the fusion of hologametes subsequently underwent division into two cells. Asexual cyst‐like stages were spherical, devoid of a thick wall and red spot, and germinated in 24–48 h. Heterogamete pairs were isogamous, and formed an angle of 0–90° between each other. Planozygote and sexual cyst formation were identified within strains established from one vegetative cell. The identity of these strains, which was studied by an amplified fragment length polymorphism analysis, was correlated with the viability of the planozygote. Resting cyst germination was described using cysts collected in the field. The size and morphology of these cysts were comparable with those formed sexually in culture. The excystment rate was higher at 24°C than at 19 or 16°C, although the cell liberated during germination (germling) was only viable at 16°C. The placement of G. semen within the Raphidophyceae family was confirmed by sequence analysis of a segment of the 18S ribosomal DNA.  相似文献   

3.
A previous study (Tuda and Shimada, 1993) has shown that the equilibrium population size of the azuki bean beetle was lower at 32°C than at 30°C and that this difference was due to a reduced maximum population size of emerged progeny through inside-bean process. In this paper, these results were analyzed further on the scale of the individual bean where interaction among larvae took place. Per-bean numbers of deposited eggs, hatched eggs, and emerged adults have been recorded at seven different parental densities under the two temperature conditions. Three individual-bean-scale process hypotheses that may explain the reduced maximum emergence density on the whole population scale are suggested: (1) a lower maximum emergence per bean at 32°C than at 30°C, if the bean scale and the wholepopulation scale share the same density-dependent pattern in adult emergence, (2) a limited range of hatched egg number per bean at 32°C, resulting from the adult oviposition process outside beans, and (3) different patterns of density-dependent emergence between the two different scales. This study showed that the inside-bean pattern of responses on the bean scale was a simple saturated curve at 30°C, but one with a discontinuous decline at higher hatched egg densities at 32°C. On the contrary, during outside-bean process, the peak number of hatched eggs decreased on this scale as observed on the wholepopulation scale. I discuss why the extracted factor of inside-bean process on the whole-population in the previous study could not be applied to the bean-scale pattern.  相似文献   

4.
Summary The author describes the life cycle ofDiatraeophaga striatalis, a tachinid parasite ofProceras sacchariphagus, under conditions of laboratory rearing. At 27°C and 80% relative humidity the average length of endoparasitic life and of nymphosis is of 10 days. Embryogenesis occurs in the uterus of the fertilized females which laid their first planidia at least 8 days after mating. At 18°C the endoparasitic life lasts from 20 days to 32 days. At 15°C the parasite larva stop developping and dies in the host; the nymph cannot tolerate this temperature for over 15 days. The oviposition process is inhibited at 15°C but females survive to this treatment for less than a week. Superparasitism does not involve the delayed development of larvae and has no effect on the size and the weight of the pupae obtained if the size of the host caterpillar is large enough and if the two parasites are not fixed on the same trachea.   相似文献   

5.
Burenella dimorpha, a microsporidian parasite of the tropical fire ant, Solenopsis geminata, produces two morphologically distinct types of spores. The binucleate free spores (spores not bound by a pansporoblast membrane) develop normally at temperatures at least as low as 20°C and as high as 32°C. The uninucleate octospores (spores bound in octets by a pansporoblast membrane), however, develop in a restricted range of temperature. Octospores constituted 35.9%± 2.6 of the spores in 25 pupae held at 28°C. Raising the temperature to 30°C reduced octospores to < 1% of the total spore population. Lowering the temperature to 25° or 22°C reduced the octospore population to 8.5%± 6.5 or 0.4 ± 0.5, respectively. Inhibition of octospore development was complete at 20°C. In contrast, the octospores of Vairimorpha necatrix and Vairimorpha plodiae are reported to be abundant at 16°C and 21°C, respectively. The critical event blocked in octospore development may be meiosis, as evidenced by an abundance of binucleate sporonts in the octospore sequence of development, and absence of more advanced sporogonic stages in hosts held at inhibitory temperatures. Free spore size is not affected by temperature although yield may be slightly reduced at elevated temperature.  相似文献   

6.
In this study, we evaluated the effect of temperature on the development and reproductive biology of Serangium japonicum (Coleoptera: Coccinellidae) at seven constant temperature regimes (17, 20, 23, 26, 29, 32 and 35°C) for its effect as a predator of Bemisia tabaci (Homoptera: Aleyrodidae). Results indicated that the duration of the egg, larval and pupal stages were significantly affected by temperature. The developmental time gradually declined with the increase of temperature from 17 to 29°C, however an extension in the developmental periods was observed in the temperature range of 32 to 35°C. The survival rates of different insect stages were stable at temperatures between 20 and 32°C; however at extreme temperatures of 35°C, a sharp decrease was evident. The highest fecundity of the female (387.2 eggs per female) was recorded at 20°C. Based on these results, life tables of S. japonicum were constructed for temperatures in the range 20–35°C. The maximum reproductive rate (R 0=279.9) occurred at 26°C. The maximum values for innate capacity for increase (r m=0.1131) and the finite rate of increase (λ=1.1197) occurred at 29°C. The mean generation time (T) decreased with increased temperature, the longest of which was 76.0 days (at 20°C) and the shortest was 36.6 days (at 32°C). These results offer valuable insight on the importation and establishment of S. japonicum into new environments with diverse temperature regimes.  相似文献   

7.
Development, reproduction, and life table parameters of the parasitoid Encarsia acaudaleyrodis Hayat parasitizing Bemisia tabaci Gennadius were studied at constant temperatures in the range of 20–32°C under laboratory conditions. Egg-to-adult developmental time decreased from 20.3 days at 20°C to 9.0 days at 32°C. An average of 189.8 day-degrees was required to complete development above the lower threshold temperature (11.5°C). Juvenile survival was 84, 88, 70 and 69% at 20, 25, 30 and 32°C, respectively. Females of E. acaudaleyrodis oviposited means of 34.2, 54.6, 30.6 and 20.1 eggs at 20, 25, 30 and 32°C, respectively, and had a mean longevity of 21.1, 14.7, 10.0 and 9.1 days at the same four temperatures. The intrinsic rate of population increase (rm) at the different temperatures ranged from 0.082 to 0.169, with the highest value recorded at 25°C. These data indicate that E. acaudaleyrodis may be better adapted to intermediate temperatures around 25°C and, therefore, could be a useful biological control agent of B. tabaci during spring and autumn when such temperatures are prevalent in Southwestern of Iran. The result could also be useful in developing a population model for E. acaudaleyrodis under field conditions.  相似文献   

8.
Grapevine moth, Lobesia botrana (Lep. Tortricidae) is a key pest of grape in Iran and other vineyards of the world. In this study, eight constant rearing temperatures (5, 10, 15, 20, 25, 30, 32 and 35 ± 1 °C) along with 60 ± 10% RH and a 16:8 (L:D) h photoperiod were chosen for demographic studies of the grapevine moth. Immature stages were unable to develop when reared at 5 and 35 °C, and the progeny moths were unable to successfully mate at 10, 15 and 32 °C. The overall developmental time of juveniles decreased at 30 °C (from 320.7 ± 3.4 d at 10 °C to 34.2 ± 0.2 d) followed by an increase to 42.5 ± 0.6 d at 32 °C. Based on values of the stable population growth parameters, the temperature of 25 °C was found to be optimal for propagation of grapevine moth. The highest values of the intrinsic rate of increase, gross and net reproductive rates were 0.0719 d??1, 55.5 and 23 females per generation, respectively, at 25 °C. Since jackknife and bootstrap estimates of mean and standard error were mainly similar, both methods may equally be used for uncertainty estimates. Our data suggest that cold storage of grapes will help to control grapevine moth infestations and damage. In many grape growing regions of Iran, the first generation is expected to cause damage. It is expected since our reproductive life table analysis suggests that the hot summer temperatures may restrict pest development during subsequent generations.  相似文献   

9.
The Andean potato tuber moth, Symmetrischema tangolias (Gyen) [Lepidoptera, Gelechiidae], is an economically important pest of potato (Solanum tuberosum L.) in the mid‐elevated Andean region and an invasive pest of partially global importance. Determination of the pest's population life table parameters is essential for understanding population development and growth under a variety of climates and as part of a pest risk analysis. The development, mortality and reproduction were studied in two pest populations (from Peru and Ecuador) in which cohorts of each life stage were exposed to different constant temperatures ranging from 10°C to 28°C. Using the Insect Life Cycle Modeling software, nonlinear equations were fitted to the data and an overall phenology model established to simulate life table parameters based on temperature. The temperature‐dependent development curve was statistically well described for eggs by Ratkowsky's model and for larvae and pupae by Taylor's model. Variability in development time among individuals independent of temperature was significantly described by a log‐logistic model. Temperature effects on immature mortality were described using different nonlinear models. Optimal temperature for survival was between 14° and 17°C. Temperature effects on adult senescence and oviposition time were described by simple exponential models; within‐group variability was described by a Weibull distribution function. Fecundity per female due to temperature followed a nonlinear model indicating maximum reproduction at ~17°C. The established model revealed good convergence with historical life tables established at fluctuating temperatures. The results confirm that S. tangolias is more adapted to cooler temperature than the common potato tuber moth, Phthorimaea operculella (Zeller). S. tangolias develops at temperatures within the range of 8–28.8°C with a maximum finite rate of population increase (=1.053) at 21°C. The established process‐based physiological model can be used globally to simulate life table parameters for Stangolias based on temperature and should prove helpful for evaluating the potential establishment risk and in adjusting pest management programmes.  相似文献   

10.
The developmental time and survival of immature stages of Neoseiulus californicus were studied at nine constant temperatures (12, 16, 24, 24, 28 32, 36, 38 and 40°C), 60–70% RH, and a photoperiod of 16 : 8 (L : D) h. The total mortality of immature N. californicus was lowest at 24°C (4.5%) and highest at 38°C (15.2%). The total developmental time decreased with increasing temperature between 12°C (18.38 days) and 32°C (2.98 days), and increased beyond 32°C. The relationship between the developmental rate and temperature was fitted by five nonlinear developmental rate models (Logan 6, Lactin 1, 2 and Briere 1, 2). The nonlinear shape of temperature development was best described by the Lactin 1 model (r2 = 0.98). The developmental variation of each stage was well described by the three‐parameter Weibull distribution model (r2 = 0.91–0.93). The temperature‐dependent developmental models of N. californicus developed in this study could be used to determine optimal temperature conditions for its mass rearing, to predict its seasonal population dynamics in fruit tree orchards or greenhouse crops, or to develop a population dynamics model of N. californicus.  相似文献   

11.
Thermal tolerance shapes organisms' physiological performance and limits their biogeographic ranges. Tropical terrestrial organisms are thought to live very near their upper thermal tolerance limits, and such small thermal safety factors put them at risk from global warming. However, little is known about the thermal tolerances of tropical marine invertebrates, how they vary across different life stages, and how these limits relate to environmental conditions. We tested the tolerance to acute heat stress of five life stages of the tropical sea urchin Lytechinus variegatus collected in the Bahía Almirante, Bocas del Toro, Panama. We also investigated the impact of chronic heat stress on larval development. Fertilization, cleavage, morula development, and 4‐armed larvae tolerated 2‐h exposures to elevated temperatures between 28–32°C. Average critical temperatures (LT50) were lower for initiation of cleavage (33.5°C) and development to morula (32.5°C) than they were for fertilization (34.4°C) or for 4‐armed larvae (34.1°C). LT50 was even higher (34.8°C) for adults exposed to similar acute thermal stress, suggesting that thermal limits measured for adults may not be directly applied to the whole life history. During chronic exposure, larvae had significantly lower survival and reduced growth when reared at temperatures above 30.5°C and did not survive chronic exposures at or above 32.3°C. Environmental monitoring at and near our collection site shows that L. variegatus may already experience temperatures at which larval growth and survival are reduced during the warmest months of the year. A published local climate model further suggests that such damaging warm temperatures will be reached throughout the Bahía Almirante by 2084. Our results highlight that tropical marine invertebrates likely have small thermal safety factors during some stages in their life cycles, and that shallow‐water populations are at particular risk of near future warming.  相似文献   

12.
Abstract The potato tuberworm, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is the most destructive pest of potato, Solanum tuberosum L. (Solanaceae), in tropical and subtropical regions in both field and storeroom situations. The modeling of temperature‐dependent development can be useful in forecasting occurrence and population dynamics of the pests. Published developmental parameters for this pest vary greatly for many reasons. We determined temperature‐dependent development of P. operculella at seven constant temperatures (16, 20, 24, 28, 32, 34 and 36 °C). Developmental period of whole immature stage (egg to the end of the pupal stage) varied from 75.5 days at 16 °C to 17 days at 32 °C. The population failed to survive at 36 °C. The observed data was modeled to determine mathematical functions for simulating P. operculella development in each stage of development and overall. Two linear models, ordinary linear regression and the Ikemoto linear model were used to describe the relationship between temperature and development rate of the different stages of P. operculella and estimating the thermal constant and lower temperature threshold. The lower temperature threshold (t) and thermal constant (k) of whole immature stage were estimated to be 11.6 °C and 338.5 DD by Ikemoto linear model, and the estimated parameters were not substantially different with those estimated by ordinary linear models. Different models provided a better fit to the various developmental stages. Of the eleven nonlinear models fitted, the Beriere‐1, Logan‐6 and Lactin‐1 model was found to be the best for modeling development rate of egg, larva and pupa of P. operculella, respectively. Phenological models based on these findings can be part of a decision‐support tool to improve the efficiency of pest management programs.  相似文献   

13.
Development time, reproduction, survival and sex ratio were determined for the omnivorous mite Amblyseius swirskii at nine constant temperatures (13, 15, 18, 20, 25, 30, 32, 34 and 36°C) on pepper leaf disks with cattail, Typha latifolia, pollen for food. These data were used to derive life table parameters at these constant temperatures. No development was observed at 13°C. The lower development threshold, based on the fit to the linear portion of the development curve, was 11.3°C. The upper development threshold was 37.4 ± 1.12°C, and the optimum temperature was calculated to be 31.5°C. Average lifetime fecundity ranged from a low of 1.3 ± 0.24 eggs/female at 15°C to a high of 16.1 ± 0.34 eggs/female at 25°C, and r m was greatest at 32°C. Non-linear regression of the relationship between temperature and r m produced an estimate of 15.49 ± 0.905°C for the lower threshold for population growth and 36.99 ± 0.816°C for the upper threshold for population growth, and an optimum temperature of 30.1°C. These values suggest that A. swiskii populations should grow quickly in response to food availability (pollen or prey) between 20 and 32°C, but that, especially below 20°C, population growth could be slow and impacts on prey populations should be monitored carefully.  相似文献   

14.
Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperature are known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadal development and sex ratio in amphibians but the mechanism of action is not known. In the present study, effect of different temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis cyanophlyctis. The embryos of Gosner stage 7 were exposed to 20, 22, 24, 26, 28, 30 and 32°C up to tadpole stage 42. The embryos (stage 7) were also exposed to 20 and 32°C up to tadpole stage 25 (non-feeding stages). Tadpoles of stage 25 were reared at 20 and 32°C up to stage 42 (feeding stages). The results show that exposure to higher temperatures (28, 30 and 32°C) during stages 7–42 produced male-biased sex ratio. Rearing of tadpoles at 32°C during stages 25–42 produced male-biased sex ratio, while exposure during stages 7–25 did not affect sex ratio. Embryos and tadpoles exposed to lower temperatures (20 and 22°C) died during the early stages. High temperatures stimulated testis development, and disturbed ovary development. Exposure to high temperatures resulted in the early metamorphosis of tadpoles with reduced body size. These results demonstrated that high temperatures influence gonadal development differently in male and female tadpoles, leading to male-biased sex ratio. These results suggest that high temperature probably acts through stress hormones and favours the small-sized sex.  相似文献   

15.
Rapid ocean warming is affecting kelp forests globally. While the sporophyte life stage has been well studied for many species, the microscopic life stages of laminarian kelps have been understudied, particularly regarding spatial and temporal variations in thermal tolerance and their interaction. We investigated the thermal tolerance of growth, survival, development, and fertilization of Ecklonia radiata gametophytes, derived from zoospores sampled from two sites in Tasmania, Australia, throughout a year, over a temperature gradient (3–30°C). For growth we found a relatively stable thermal optimum at ~20.5°C and stable thermal maxima (25.3–27.7°C). The magnitude of growth was highly variable and depended on season and site, with no consistent spatial pattern for growth and gametophyte size. Survival also had a relatively stable thermal optimum of ~17°C, 3°C below the optimum for growth. Gametophytes grew to single cells between 5 and 25°C, but sporophytes were only observed between 10 and 20°C, indicating reproductive failure outside this range. The results reveal complex effects of source population and season of collection on gametophyte performance in E. radiata, with implications when comparing results from material collected at different localities and times. In Tasmania, gametophytes grow considerably below the estimated thermal maxima and thermal optima that are currently only reached during summer heatwaves, whereas optima for survival (~17°C) are frequently reached and surpassed during heatwaves, which may affect the persistence and recruitment of E. radiata in a warmer climate.  相似文献   

16.
The developmental rates of various life stages ofRhagoletis completa Cresson (Diptera: Tephritidae) were determined in the laboratory at seven different constant temperatures: 8, 12, 16, 20, 24, 28, and 32±1°C, RH 80±10%, photoperiod L 16∶D8. Preoviposition developmental rate was fastest at 28°C (10±1 days, mean±SD) and slowest at 12°C (26±1 days). About 83% of the females deposited eggs at 20 and 24°C and only 25% oviposited at 32°C. Females laid the highest number of eggs at 24°C and the lowest at 8°C. Egg development increased with increasing temperatures up to 28°C, then declined. The fastest egg development was noticed at 28°C (55±1 h) and slowest at 8°C (389±2 h). Over 90% egg hatch was observed at temperatures between 12 and 32°C, but decreased to 73% at 8°C. Larval development was fastest also at 28°C (20±0.2 days). Over 65% pupation was recorded at 20 and 24°C, but decreased to 15% at 32°C and 12% at 8°C. Pupal development was most rapid at 24°C (53±1 days) and slowest at 8°C (162±2 days). More than 70% of adult emergence was noticed in treatments between 16 and 24°C but decreased to 20% at 8°C. Based on a linear regression model of temperature-development rate relationship, the lower developmental thresholds were determined to be 6.6, 5.3, 2.9, and 5°C for preoviposition, egg, larval, and pupal stages, respectively. Based on a non-linear developmental rate model, the upper developmental thresholds were 34°C for preoviposition, egg, and larval stages and 30°C for pupal stage.  相似文献   

17.
Selective mortality within a population, based on the phenotype of individuals, is the foundation of the theory of natural selection. We examined temperature-induced shifts in the relationships among early life history traits and survivorship over the embryonic and larval stages of a tropical damselfish, Pomacentrus amboinensis. Our experiments show that temperature determines the intensity of selective mortality, and that this changes with ontogeny. The size of energy stores determined survival through to hatching, after which egg size became a good indicator of fitness as predicted by theoretical models. Yet, the benefits associated with egg size were not uniform among test temperatures. Initial egg size positively influenced larval survival at control temperature (29 °C). However, this embryonic trait had no effect on post-hatching longevity of individuals reared at the higher (31 °C) and lower (25 °C) end of the temperature range. Overall, our findings indicate that the outcome of selective mortality is strongly dependent on the interaction between environment conditions and intrinsic developmental schedules.  相似文献   

18.
To study a possible adaptation of the symbiosis between white clover (Trifolium repens L.) and Rhizobium leguminosarum biovar trifolii with regard to light and temperature at northern latitudes, local seed populations of white clover and isolates of R. leguminosarum biovar trifolii from 3 different latitudes in Norway, 58°48'N, 67°20'N and 69°22'N, were used. The commercial cultivar Undrom was used as a reference plant. The experiments were done at 18 and 9°C under controlled conditions in a phytotron during the natural growing season at 69° 39'N. Growth of the plants was evaluated by number and size of leaves, dry matter production and total N-content. At 18°C the white clover plants were harvested twice while at 9°C there was only one growth period. The results from first harvest at 18°C and total growth at 9°C, showed that white clover populations from northern Norway had a lower growth potential than the population from the south and cv. Undrom. This difference was not apparent in the second growth period at 18°C. Growth of the plants from seeds to first harvest was enhanced by mineral nitrogen compared to plants dependent on Rhizobium only. However, after a second growth period dry weight and total nitrogen content of the plants with nitrogen fixation were comparable to the plants receiving mineral nitrogen. Statistical analysis showed that the most important factor for the variation in dry matter production was the plant population. Within the populations at 9°C and at first harvest at 18°C, there were no significant differences in dry matter production with different Rhizobium inoculum. In the second growth period at 18°C, different inoculum gave significantly different amount of dry matter within a population. The results showed a significant interaction between plant population and Rhizobium inoculum, and the results indicated that plants from the north gave higher yield when nodulated by Rhizobium from the north than from the south.  相似文献   

19.
Cold storage is one means of preserving parasitoids prior to release in augmentation biological control programs. This study examined the feasibility of storing larval and pupal stages of a sexual population of Lysiphlebus fabarum Marshall (Hymenoptera: Braconidae: Aphidiinae) at 6 ± 1 and 8 ± 1 °C, 50–60% r.h., and L14:D10 photoperiod. These life stages were stored for periods of 1, 2, and 3 weeks under fluctuating thermal regimes (2 h daily at 21 ± 1 °C). Generally, pupae gave better results than larvae, and 6 °C was better than 8 °C, considering wasp survival, wasp size (tibial and antennal lengths), egg load, and egg size. The best results were obtained with pupae stored for 2 weeks under a fluctuating temperature regime at 6 °C. Females emerging from this treatment did not differ from controls (developing directly at 21 °C) in body size, egg size, or progeny sex ratio, and suffered less than 20% mortality. Egg loads were reduced in these wasps, but the reductions were substantially less than occurred in other 2‐week‐storage treatments. Wasps stored in this manner successfully parasitized similar numbers of aphids as controls and produced similar progeny sex ratios. These results reveal a suitable set of low‐temperature conditions that can be used to delay the development of L. fabarum for 2 weeks with minimal impact on wasp fitness.  相似文献   

20.
Following an environmental change, the course of a population's adaptive evolution may be influenced by environmental factors, such as the degree of marginality of the new environment relative to the organism's potential range, and by genetic factors, including constraints that may have arisen during its past history. Experimental populations of bacteria were used to address these issues in the context of evolutionary adaptation to the thermal environment. Six replicate lines of Escherichia coli (20°C group), founded from a common ancestor, were propagated for 2000 generations at 20°C, a novel temperature that is very near the lower thermal limit at which it can maintain a stable population size in a daily serial transfer (100-fold dilution) regime. Four additional groups (32/20, 37/20, 42/20, and 32–42/20°C groups) of six lines, each with 2000 generation selection histories at different temperatures (32, 37, 42, and daily alternation of 32 and 42°C), were moved to the same 20°C environment and propagated in parallel to ascertain whether selection histories influence the adaptive response in this novel environment. Adaptation was measured by improvement in fitness relative to the common ancestor in direct competition experiments conducted at 20°C. All five groups showed improvement in relative fitness in this environment; the mean fitness of the 20°C group after 2000 generations increased by about 8%. Selection history had no discernible effect on the rate or final magnitude of the fitness responses of the four groups with different histories after 2000 generations. The correlated fitness responses of the 20°C group were measured across the entire thermal niche. There were significant tradeoffs in fitness at higher temperatures; for example, at 40°C the average fitness of the 20°C group was reduced by almost 20% relative to the common ancestor. We also observed a downward shift of 1–2°C in both the upper and lower thermal niche limits for the 20°C selected group. These observations are contrasted with previous observations of a markedly greater rate of adaptation to growth near the upper thermal limit (42°C) and a lack of trade-off in fitness at lower temperatures for lines adapted to that high temperature. The evolutionary implications of this asymmetry are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号