首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genetic structure, selfing rate and inbreeding depression of the hermaphroditic freshwater snail Physa acuta were jointly analysed in a population near Montpellier, France. Allozymic markers revealed moderate gene diversity (0.138), and no heterozygote deficiency. The mean outcrossing rate, estimated by using progeny arrays, was 0.9, with substantial variation among families. This also suggests that the number of fathers among outcrossed offspring of a given mother is low. Inbreeding depression was estimated over more than one generation using 83 first‐laboratory‐generation (G1) families. The main parameters measured were parental (G1) fecundity, offspring (G2) survival and fecundity. Size and growth were also monitored. Parental fecundity was analysed under several conditions (isolation, pair and quadruplet outcrossing). The self‐fertilization depression, including parental fecundity, offspring survival and fecundity, was about 0.9 at the population level. The genetic data obtained in the same population indicate a value of about 0.3 using Ritland’s (1990) technique, suggesting that the depression over the whole life‐cyle might be even higher than 0.9. Grouping affected neither fecundity nor self‐fertilization depression. Substantial variation in depression for survival was detected among individuals, from no survival in some selfed families to better survival than that of outbred families in others. The overall result (outbred population structure, high outcrossing rate and high self‐fertilization depression) is consistent with what is expected in large outcrossing populations in which inbreeding depression is maintained by mutation‐selection balance.  相似文献   

2.
1. Few studies have directly addressed the role played by parasites in the structure and function of ecosystems. Parasites influence the behaviour, reproduction and overall fitness of their hosts, but have been usually overlooked in community and ecosystem‐level studies. We investigated the effects of trematode parasites on snail–periphyton interactions. 2. Physa  acuta (Gastropoda: Pulmonata) snails infected with the trematode Posthodiplostomum minimum (often >30% of within‐shell biomass) grazed more rapidly than uninfected snails. Trematode effects on snail grazing indirectly affected the standing stock and community structure of periphyton. Populations of snails with 50% infected individuals reduced algal biomass by 20% more than populations with lesser (10% or 0%) infection rates. 3. The alga Cladophora glomerata dominated periphyton communities grazed by snail populations with 50% infection rates, whereas diatoms and blue–green algal taxa dominated when grazed by snail populations with lower infection rates. 4. Thus, trematodes indirectly affected periphyton communities by altering host snail behaviour, a trait‐mediated indirect effect. These results indicate that trematodes can indirectly influence benthic community structure beyond simple population fitness, with possible related effects on ecosystem function.  相似文献   

3.
Intraspecific genetic variation can affect decomposition, nutrient cycling, and interactions between plants and their associated belowground communities. However, the effects of genetic variation on ecosystems can also be indirect, meaning that genes in a focal plant may affect ecosystems by altering the phenotype of interacting (i.e., neighboring) individuals. We manipulated genotype identity, species identity, and the possibility of belowground interactions between neighboring Solidago plants. We hypothesized that, because our plants were nitrogen (N) limited, the most important interactions between focal and neighbor plants would occur belowground. More specifically, we hypothesized that the genotypic identity of a plant's neighbor would have a larger effect on belowground biomass than on aboveground biomass, but only when neighboring plants were allowed to interact belowground. We detected species‐ and genotype‐level variation for aboveground biomass and ramet production. We also found that belowground biomass and ramet production depended on the interaction of neighbor genotype identity and the presence or absence of belowground interactions. Additionally, we found that interspecific indirect genetic effects (IIGEs; changes in focal plant traits due to the genotype identity of a heterospecific neighbor) had a greater effect size on belowground biomass than did focal genotype; however, this effect only held in pots that allowed belowground interactions. These results expand the types of natural processes that can be attributed to genotypes by showing that, under certain conditions, a plant's phenotype can be strongly determined by the expression of genes in its neighbor. By showing that IIGEs are dependent upon plants being able to interact belowground, our results also provide a first step for thinking about how genotype‐based, belowground interactions influence the evolutionary outcomes of plant‐neighbor interactions.  相似文献   

4.
Indirect genetic effects (IGE) of parental care performance and the direct–indirect covariance contribute substantially to total heritability in domesticated and laboratory mammals. For animals from natural populations empirical estimates of IGE are sparse. Thus, despite recent models relating IGE to evolution, evolutionary interpretations of IGE are limited. To address this deficit, we used a reciprocal cross‐fostering breeding design to estimate environmental influences, direct and indirect genetic effects, and direct–indirect genetic covariances in the burying beetle Nicrophorus pustulatus to determine the evolutionary importance of IGE arising from variation in parental care performance. Carrion size positively affected adult mass and time on carrion, but had no effect on total development time. Males were slightly larger than females. For both mass and development, independent of these environmental influences, direct and indirect genetic effects were of moderate magnitude. Total genetic effects explained 36–50% of the phenotypic variance in mass and size and 27–37% of phenotypic variance in development time. Direct–indirect genetic covariances were zero or close to zero. Thus, for both mass and development time, the response to natural selection arising from environmental variation may be accelerated by the presence of IGE in N. pustulatus. The generality of this pattern and the evolutionary significance of IGE arising from parental care awaits further study of natural populations.  相似文献   

5.
Summary Two species of freshwater snails, Physa acuta and Lymnaea sp. aff. columella, were collected from Asabata marsh, Shizuoka Japan. Individuals of both species inhabit the same plants. Individuals of P. acuta are more abundant than those of L. sp. aff. columella. Experiments were conducted to examine the effect of water conditioned by snails on the growth of 10-day-old juvenile P. acuta snails. Juvenile snails in water conditioned by L. sp. aff. columella grew faster than those in water conditioned by P. acuta or only lettuce. The effects of water conditioned by P. acuta differed among the litters. The results suggest that juvenile P. acuta snails experience accelated growth in the presence of L. sp. aff. columella. The freshwater snails interacted through resource competition as well as through substances disolved in the water.  相似文献   

6.
We examine the effects of fecundity‐limited attack rates and resistance of hosts to parasitism on the dynamics of two‐host–one‐parasitoid systems. We focus primarily on the situation where one parasitoid species attacks two host species that differ in their suitability for parasitism. While all eggs allocated to suitable hosts develop into adult parasitoids, some of the eggs allocated to marginal host do not develop. Marginal hosts can therefore act as a sink for parasitoid eggs. Three‐species coexistence is favoured by low levels of parasitoid fecundity and by low levels of suitability of the marginal host. Our model also produces an indirect (+, ?) interaction in which the suitable host can benefit from the presence of the marginal host, but the marginal host suffers from the presence of the suitable host. The mechanism driving the indirect (+, ?) interaction is egg limitation of parasitoids incurred by allocating eggs to marginal hosts.  相似文献   

7.
Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long‐term mark‐recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12–17%) and a slight decrease in mean juvenile survival (4–6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.  相似文献   

8.
Buschbaum  Christian 《Hydrobiologia》2000,440(1-3):119-128
On the extensive sedimentary tidal flats of the Wadden Sea, beds of the blue mussel Mytilus edulis represent the only major hard substratum and attachment surface for sessile organisms. On this substratum, the barnacle Semibalanus balanoides is the most frequent epibiont. In summer 1998, it occurred on over 90% of the large mussels (>45 mm shell length) and the dry weight of barnacles reached 65% of mussel dry weight. However, the extent of barnacle overgrowth is not constant and differs widely between years. Periwinkles (Littorina littorea) may reach densities >2000 m–2 on intertidal mussel beds. Field experiments were conducted to test the effect of periwinkle grazing on barnacle densities. An experimental reduction of grazing and bulldozing pressure by periwinkles resulted in increased recruitment of barnacles, while barnacle numbers decreased with increasing snail density. The highest numbers of barnacles survived in the absence of L. littorea. However, a lack of periwinkle grazing activity also facilitated settlement of ephemeral algae which settled later in the year. Field experiments showed that the growth rate of barnacles decreased in the presence of these ephemeral algae. Thus, L. littorea may reduce initial barnacle settlement, but later may indirectly increase barnacle growth rate by reducing ephemeral algae. It is suggested that periwinkle density may be a key factor in the population dynamics of S. balanoides on intertidal mussel beds in the Wadden Sea.  相似文献   

9.
Identifying the factors that contribute to the adaptive significance of mating preferences is one major goal of evolutionary research and is largely unresolved. Both direct and indirect benefits can contribute to mate choice evolution. Failure to consider the interaction between individual consequences of mate choice may obscure the opposing effects of individual costs and benefits. We investigate direct and indirect fitness effects of female choice in a desert fly (Drosophila mojavensis), a species where mating confers resistance to desiccation stress. Females prefer males that provide a direct benefit: greater resistance to desiccation stress. Mating preferences also appear to have indirect consequences: daughters of preferred males have lower reproductive success than daughters of unpreferred males, although additional experimentation will be needed to determine if the indirect consequences of female preferences actually arise from 'sexually antagonistic' variation. Nevertheless, the results are intriguing and are consistent with the hypothesis that an interaction between direct and indirect benefits maintains sexually antagonistic variation in these desert flies: increased desiccation resistance conferred by mating might offset the cost of producing low-fecundity daughters.  相似文献   

10.
Female mate choice is a complex decision‐making process that involves many context‐dependent factors. In Drosophila melanogaster, a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience‐dependent mate choice behaviors, indicating a genotype‐by‐environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.  相似文献   

11.
Abstract.  1. Using three genetic classes of willows, Salix eriocephala , Salix sericea , and their interspecific F1 hybrid, the influence of browsing damage and the importance of genetic class on insect community structure were evaluated.
2. Three-year-old plants grown from seeds generated from controlled crosses were placed in a common garden after a damage treatment was imposed on them (plants were either left undamaged during the previous winter or they had 50% of the previous year's growth removed). Clipping damage caused large increases in mean shoot length for plants.
3. The abundance of eight species of insect herbivores was determined for every plant to evaluate community structure for three genetic classes across the two damage levels. Based on manova , damage treatment had a modest effect on the relative abundance of herbivores (i.e. their proportional representation). In contrast, dramatic differences were detected among genetic classes for relative abundance; in cases where damage treatment influenced relative abundance of herbivores, the importance of genetic class was at least 20-fold greater than that of damage treatment. No interaction between genetic class and browsing treatment was detected for community structure.
4. The weak response of the herbivore community to clipping damage, contrasted to the large response to genetic class, was very surprising because mean shoot length was greatly altered by damage treatment. These findings, coupled together with previous research, suggest that plant genetic differences can act as the primary basis for herbivore community structure, while the effects of browsing may not be as common.  相似文献   

12.
By using selection differentials, gradients and structural equation modelling (SEM), I have quantified the phenotypic selection acting on Lobularia maritima (Cruciferae) flower size, display, colour and density, using data on lifetime female fitness. Furthermore, by analysing the resulting F1 generation in field and greenhouse conditions, I estimated the actual intergenerational change in the value of these traits. Both pollinators preferred plants with many and large flowers. Strong directional selection for increased flower display was found in all years of the study, regardless of the technique used. Indirect selection due to a high significant correlation with flower display occurred on flower colour and size. SEM showed that pollinators played only a minor role in this observed phenotypic selection. The analysis of the phenotypes of F1 plants showed that flower display actually increased across generations. In addition, white flowers were significantly more frequent in the offspring population than in the parental one, mostly due to the association between flower display and white coloured flowers. This suggests that both direct and indirect selection can play a role in the evolution of correlated traits in this crucifer.  相似文献   

13.
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this ‘social environment effect’ by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group‐level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.  相似文献   

14.
Blanchet S  Loot G  Dodson JJ 《Oecologia》2008,157(1):93-104
Using semi-natural stream channels, we estimated the effects of competition and predation exerted by juvenile and adult exotic rainbow trout (Oncorhynchus mykiss) on the diel activity pattern of juvenile native Atlantic salmon (Salmo salar), a secondary consumer. We also evaluated the direct and indirect effects of competition, predation and abiotic factors (water depth and velocity) on the growth rate of salmon, the biomass of invertebrate grazers (primary consumers) and the biomass of periphytic algae (primary producers; chlorophyll a). The presence of chemical cues emanating from adult predatory trout reduced the daily activity of juvenile Atlantic salmon. In contrast, competition imposed by juvenile rainbow trout forced Atlantic salmon to be more active during the day, even if adult rainbow trout were also present. We found no effect of either competition or of predatory cues on the growth rate of Atlantic salmon, and no evidence of indirect effects on either the biomass of invertebrates or the biomass of chlorophyll a. In contrast, we demonstrated that this food chain (fish--invertebrate grazers--periphytic algae) was under the control of a critical abiotic factor, the water velocity, and of bottom-up processes. We concluded that the exotic species directly increases the risk of predation of the native Atlantic salmon, but behavioral compensation probably limits the effects on growth rate. The competition and predation imposed by the invaders had no indirect effects on lower trophic levels. Top-down effects may have been mitigated by the dominant influence of water velocity controlling all components of the food chain and by elevated levels of primary production.  相似文献   

15.
Two insecticides, lindane (321 µg l–1) and deltamethrin (13 µg l–1) were employed in a four mesocosm experiment (two ponds of 10 m3 and two of 16 m3) to asses the impact of water pollution by pesticides. Resistance of the different zooplankton species was variable and depended upon both the group and the insecticide concentration. No effect of lindane was observed on macrozooplancton such as Cladocera and Copepoda. In the deltamethrin-treated pond, all species of zooplankton were found dead a day after the treatment. The microzooplankton (Rotifera and copepod nauplii) were highly susceptible to both insecticides. Although the larvae of Chaoborus were present in the ponds after the treatments, their density decreased (less than 1 individual l–1). The elimination of filter-feeding zooplankton by deltamethrin was followed by an increase of the concentration of chlorophyll a in the post-treatment period. Two months later the original zooplankton population recovered, with the addition of a new and dominant species: Ceriodaphnia reticulata.  相似文献   

16.
17.
An integrated fate and effects model was constructed to simulate direct and indirect effects of chlorpyrifos in experimental indoor ecosystems (microcosms) without macrophytes. These microcosms resembled the ubiquitous drainage ditches in the Netherlands. Observed densities of algae, zooplankton and macrofauna were converted to biomass (g DW m−2) for calibration of a bio-energetics model based on functional groups. The fate of chlorpyrifos could be simulated well by calibrating the sorption coefficient for organic carbon, diffusion rate to the sediment and degradation rates in water and sediment. Direct effects were simulated by integrating a sigmoidal concentration-effect relationship with the population growth model for functional groups. It was hypothesized that indirect effects resulted mostly from resource competition. Functional groups were divided in sensitive and insensitive subgroups to allow such model behaviour. Direct effects of chlorpyrifos affected all arthropods in the microcosms which the model could replicate with reasonable accuracy. Recovery of sensitive zooplankton (consisting of cladocerans and copepods) occurred faster in the microcosms than in the simulation. Indirect effects on algae, rotifers, shredders and tubificids resulted from the direct effects as incorporated in the model. Except for algae, simulations showed good qualitative agreement with observed indirect effects, but no exact quantitative match could be obtained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
When access to food is restricted, faster growing fish may be those whose behaviour is relatively unaffected by the presence of nearby conspecifics. Behavioural experiments were carried out to determine the relation between growth and motor activity levels in crowded and uncrowded conditions, and measures of aversion/attraction to groups of conspecifics. Two experimental groups of Or)-ius laripes (Temminck and Schlegel) were grown for several weeks in two environments manipulated so as to maximize differences in social interactions. In the high interaction environment (HI), food was provided inside a floating cork ring. In the low interaction environment (LI), food was spread over the container's surface. Fish were measured at the end of the growth period and tested for their activity levels in the presence of conspecifics and for their preference for, or tolerance of crowded conditions. The correlation between motor activity and growth was significantly more positive in the HI environment than in the LI environment. The relationship between preference for crowded conditions and growth was negative for both groups of fish, although less so for HI than for LI. We conclude that artificial selection for faster growth may produce more aggressive fish only under very high levels of forced social interaction (competition), if at all. Under conditions of reduced social interaction, the social-aversive or socially indifferent fish grow faster.  相似文献   

19.
1. In order to understand the relative importance of prey quality and mobility in indirect interactions among alternative prey that are mediated by a shared natural enemy, the nutritional quality of two common prey for a generalist insect predator along with the predator's relative preference for these prey was determined. 2. Eggs of the corn earworm Helicoverpa zea (Lepidoptera: Noctuidae) were nutritionally superior to pea aphids Acyrthosiphum pisum (Homoptera: Aphididae) as prey for big‐eyed bugs Geocoris punctipes (Heteroptera: Geocoridae). Big‐eyed bugs survived four times as long when fed corn earworm eggs than when fed pea aphids. Furthermore, only big‐eyed bugs fed corn earworm eggs completed development and reached adulthood. 3. In two separate choice experiments, however, big‐eyed bugs consistently attacked the nutritionally inferior prey, pea aphids, more frequently than the nutritionally superior prey, corn earworm eggs. 4. Prey mobility, not prey nutritional quality, seems to be the most important criterion used by big‐eyed bugs to select prey. Big‐eyed bugs attacked mobile aphids preferentially when given a choice between mobile and immobilised aphids. 5. Prey behaviour also mediated indirect interactions between these two prey species. The presence of mobile pea aphids as alternative prey benefited corn earworms indirectly by reducing the consumption of corn earworm eggs by big‐eyed bugs. The presence of immobilised pea aphids, however, did not benefit corn earworms indirectly because the consumption of corn earworm eggs by big‐eyed bugs was not reduced when they were present. 6. These results suggest that the prey preferences of generalist insect predators mediate indirect interactions among prey species and ultimately affect the population dynamics of the predator and prey species. Understanding the prey preferences of generalist insect predators is essential to predict accurately the efficacy of these insects as biological control agents.  相似文献   

20.
Together with the avoidance of any negative impact of inbreeding, preservation of genetic variability for life‐history traits that could undergo future selective pressure is a major issue in endangered species management programmes. However, most of these programmes ignore that, apart from the direct action of genes on such traits, parents, as contributors of offspring environment, can influence offspring performance through indirect parental effects (when parental genotype and phenotype exerts environmental influences on offspring phenotype independently of additive genetic effects). Using quantitative genetic models, we estimated the additive genetic variance for juvenile survival in a population of the endangered Cuvier's gazelle kept in captivity since 1975. The dataset analyzed included performance recording for 700 calves and a total pedigree of 740 individuals. Results indicated that in this population juvenile survival harbors significant additive genetic variance. The estimates of heritability obtained were in general moderate (0.115–0.457) and not affected by the inclusion of inbreeding in the models. Maternal genetic contribution to juvenile survival seems to be of major importance in this gazelle's population as well. Indirect genetic and indirect environmental effects assigned to mothers (i.e., maternal genetic and maternal permanent environmental effects) roughly explain a quarter of the total variance estimated for the trait analyzed. These findings have major evolutionary consequences for the species as show that offspring phenotypes can evolve strictly through changes in the environment provided by mothers. They are also relevant for the captive breeding programme of the species. To take into account, the contribution that mothers have on offspring phenotype through indirect genetic effects when designing pairing strategies might serve to identify those females with better ability to recruit, and, additionally, to predict reliable responses to selection in the captive population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号