首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose-6-phosphate isomerase   总被引:2,自引:0,他引:2  
Glucose-6-phosphate isomerase (EC 5.3.1.9) is a dimeric enzyme of molecular mass 132000 which catalyses the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. The crystal structure of the enzyme from pig muscle has been determined at a nominal resolution of 2.6 A. The structure is of the alpha/beta type. Each subunit consists of two domains and the active site is in both the domain interface and the subunit interface (P.J. Shaw & H. Muirhead (1976), FEBS Lett. 65, 50-55). Each subunit contains 13 methionine residues so that cyanogen bromide cleavage will produce 14 fragments, most of which have been identified and at least partly purified. Sequence information is given for about one-third of the molecule from 5 cyanogen bromide fragments. One of the sequences includes a modified lysine residue. Modification of this residue leads to a parallel loss of enzymatic activity. A tentative fit of two of the peptides to the electron density map has been made. It seems possible that glucose-6-phosphate isomerase, triose phosphate isomerase and pyruvate kinase all contain a histidine and a glutamate residue at the active site.  相似文献   

2.
Peptides obtained as a result of cyanogen bromide cleavage of the G-factor have been studied. All 12 peptides embracing the whole structure of fragment T4 have been isolated. For their amino acid sequence determination, cyanogen bromide peptides have been further cleaved with trypsin, chymotrypsin, thermolysin, staphylococcal glutamic protease and BNPS-skatole. The complete primary structure of 9 from 12 cyanogen bromide peptides has been determined.  相似文献   

3.
Thermal inactivation of glucose-6-phosphate dehydrogenase (G6PDH) and its conjugates with progesterone containing 3, 7 and 35 molecules of the modifier was studied in bidistilled water over a temperature range 35-47 degrees. At different temperatures and initial concentrations of the enzyme and its modified forms, thermal inactivation is described by the equation of the first order up to a significant degree of enzyme deactivation. The effective Kin values are decreased with the increase of the native G6PDH concentration and changed in a complicated manner with the increase of the conjugate concentration depending on the enzyme modification degree, which reflects a great role of the enzyme hydrophobicity in its inactivation. The role of hydrophobicity of the modified G6PDH in changes of its specific activity is discussed.  相似文献   

4.
Bovine heart cytochrome c oxidase (CcO) was inactivated by the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) in a time- and concentration-dependent manner with pseudo-first-order kinetics. Cytochrome c oxidase electron transport activity decreased by as much as 50% when the enzyme was incubated for 2 h at room temperature with excess HNE (300-500 microM). HNE-modified CcO subunits were identified by two mass spectrometric methods: electrospray ionization mass spectrometry (ESI/MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). All of the experimentally determined molecular masses were in excellent agreement with published sequence values with an accuracy of approximately 1 part per 10000 mass units for subunits smaller than 20 kDa and approximately 1 part per 1000 mass units for the three subunits larger than 20 kDa. Both MS methods detected six CcO subunits with an increased mass of 156 Da after reaction with HNE (subunits II, IV, Vb, VIIa, VIIc, and VIII); this result indicates a single Michael-type reaction site on either a lysine or histidine residue within each subunit. Reaction of HNE with either subunit VIIc or subunit VIII (modified approximately 30% and 50-75%, respectively) must be responsible for CcO inhibition. None of the other subunits were modified more than 5% and could not account for the observed loss of activity. Reaction of HNE with His-36 of subunit VIII is most consistent with the approximately 50% inhibition of CcO: (1) subunit VIII is modified more than any other subunit by HNE; (2) the time dependence of subunit VIII modification is consistent with the percent inhibition of CcO; (3) His-36 was identified as the HNE-modified amino acid residue within subunit VIII by tandem MS analysis.  相似文献   

5.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

6.
The amino acid sequence of Escherichia coli cyanase   总被引:4,自引:0,他引:4  
The amino acid sequence of the enzyme cyanase (cyanate hydrolase) from Escherichia coli has been determined by automatic Edman degradation of the intact protein and of its component peptides. The primary peptides used in the sequencing were produced by cyanogen bromide cleavage at the methionine residues, yielding 4 peptides plus free homoserine from the NH2-terminal methionine, and by trypsin cleavage at the 7 arginine residues after acetylation of the lysines. Secondary peptides required for overlaps and COOH-terminal sequences were produced by chymotrypsin or clostripain cleavage of some of the larger peptides. The complete sequence of the cyanase subunit consists of 156 amino acid residues (Mr 16,350). Based on the observation that the cysteine-containing peptide is obtained as a disulfide-linked dimer, it is proposed that the covalent structure of cyanase is made up of two subunits linked by a disulfide bond between the single cystine residue in each subunit. The native enzyme (Mr 150,000) then appears to be a complex of four or five such subunit dimers.  相似文献   

7.
Thymidylate synthetase from Lactobacillus casei was S-carboxymethylated and degraded by treatment with cyanogen bromide. Although the protein contains 6 methionine residues, only 5 cyanogen bromide peptides were obtained due to the presence of 1 methionine on the NH2 terminus and another adjacent to a threonine residue which was resistant to cleavage. The peptides were isolated by differential extraction, first with ammonium acetate, then pyridine acetate, and finally the residue was solubilized with 50% acetic acid. Each peptide was further purified to homogeneity by Bio-Gel chromatography. The size of the peptides from the amino to carboxyl end of the enzyme subunit was CNBr 1, 4,100; CNBr 2, 10,300; CNBr 3, 8,100; CNBr 4, 11,800; CNBr 5, 2,200. The sum of the amino acid residues of the peptides is equal to the sum of the residues in an enzyme subunit, indicating that all of the CNBr peptides have been isolated. The CNBr-resistant methionine was located in CNBr 2 and the 5-fluoro-2'-deoxyuridine 5'-monophosphate binding site in CNBr 4. The holoenzyme molecular weight, based on the residue weights of the amino acids in the two equivalent subunits, is equal to 73,176. The complete sequence of each of the CNBr peptides, except for CNBr 4, which is presented in the following paper, is described.  相似文献   

8.
Selective oxidation of methionine residues in proteins.   总被引:7,自引:0,他引:7  
Methionine residues in peptides and proteins were oxidized to methionine sulfoxides by mild oxidizing reagents such as chloramine-T and N-chlorosuccinimide at neutral and slightly alkaline pH. With chloramine-T cysteine was also oxidized to cystine but no other amino acid was modified; with N-chlorosuccinimide tryptophans were oxidized as well. In peptides and denaturated proteins all methionine residues were quantitatively oxidized, while in native proteins only exposed methionine residues could be modified. Extent of oxidation of methionine residues was determined by quantitative modification of the unoxidized methionine residues with cyanogen bromide (while methionine sulfoxide residues remained intact), followed by acid hydrolysis and amino acid analysis. Methionine was determined as homoserine and methionine sulfoxide was reduced back to methionine. Sites of oxidation were identified in a similar way by cleaving the unoxidized methionyl peptide bonds with cyanogen bromide, followed by quantitative end-group analysis of the new amino-terminal amino acids (by an automatic sequencer).  相似文献   

9.
The 102 amino acid residues of CNBr 4, the largest of 5 cyanogen bromide peptides from the Lactobacillus casei thymidylate synthetase were completely sequenced by means of limited tryptic, tryptic, chymotryptic, and staphylococcal protease peptides. CNBr 4 contains both of the cysteines in an enzyme subunit, with the 5-fluorodeoxyuridylate-reactive cysteine at residue 198 and the other at residue 244.  相似文献   

10.
4-Hydroxy-2-nonenal (HNE), a major lipid peroxidation-derived reactive aldehyde, is a potent inhibitor of sulfhydryl enzymes, such as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). It has been suggested that HNE exerts an inhibitory effect on the enzyme due to the modification of the cysteine residue (Cys-149) at the catalytic site generating the HNE-cysteine Michael addition-type adduct [Uchida, K., and Stadtman, E. R. (1993) J. Biol. Chem. 268, 6388-6393]. In the study presented here, to elucidate the mechanism for the inactivation of GAPDH by HNE, we attempted to identify the modification sites of the enzyme by monitoring the formation of the HNE Michael adducts by mass spectrometric methods. Incubation of GAPDH (1 mg/mL) with 1 mM HNE in 50 mM sodium phosphate buffer (pH 7.4) at 37 degrees C resulted in a time-dependent loss of enzyme activity, which was associated with the covalent binding of HNE to the enzyme. To identify the site of modification of GAPDH by HNE, both the HNE-pretreated and untreated GAPDH were digested with trypsin and V8 protease, and the resulting peptides were subjected to electrospray ionization liquid chromatography-mass spectrometry (ESI-LC-MS). This technique identified five peptides, which contained the HNE adducts at His-164, Cys-244, Cys-281, His-327, and Lys-331 and revealed that both His-164 and Cys-281 were very rapidly modified at 5 min, followed by Cys-244 at 15 min and His-327 and Lys-331 at 30 min. These observations and the observation that the HNE modification of the catalytic center, Cys-149, was not observed suggest that the HNE inactivation of GAPDH is not due to the modification of the catalytic center but to the selective modification of amino acids primarily located in the surface of the GAPDH molecule.  相似文献   

11.
Chemical modification of phospholipase A2 (phosphatide 2-acyl-hydrolase, EC 3.1.1.4) from the venom of gaboon adder (Bitis gabonica) showed that histidine and lysine residues are essential for enzyme activity. Treatment with p-bromophenacyl bromide or pyridoxal 5'-phosphate resulted in the specific covalent modification of one histidine or a total of one lysine residue per molecule of enzyme, respectively, with a concomitant loss of enzyme activity. Competitive protection against modification and inactivation was afforded by the presence of Ca2+ and/or micellar concentrations of substrate analogue, lysophosphatidylcholine. Neither modification caused any significant conformational change, as judged from circular dichroic properties. Amino acid analyses and the alignment of peptides from cyanogen bromide and proteolytic cleavage of modified enzyme preparations delineated His-45 as the only residue modified by p-bromophenacyl bromide. However, pyridoxal 5'-phosphate was shown to have reacted not with a single lysine but with four different ones (residues 11, 33, 58 and 111) in such a manner that an overall stoichiometry of one modified lysine residue/molecule enzyme resulted. Apparently, the essential function of lysine could be fulfilled by any one out of these four residues.  相似文献   

12.
Native carboxypeptidase B and its Co2+-substituted derivative were oxidized by the active-site-directed agent m-chloroperbenzoic acid. The following results were obtained a) In the cobalt enzyme there was a decrease in both the peptidase and the esterase activities, whereas in the zinc enzyme only the peptidase activity decreased. Peptide or ester pseudo-substrates protected the cobalt enzyme but not the zinc enzyme against inactivation. b) Upon oxidation and formation of Co3+, cleavage of peptide bonds occurred in the cobalt enzyme but not in the zinc enzyme. Both enzymes retained their original metal content. c) Following oxidation of the enzymes, amino acid analysis revealed a modification of a methionyl residue in the zinc enzyme only; the cobalt enzyme, on the other hand, showed a modification of a histidyl residue. d) Peptide mapping of the enzymes after cleavage by cyanogen bromide indicated that two methionyl peptides were missing in the oxidized zinc enzyme. These peptides point to Met-64 as the site of modification. The peptide map of the oxidized cobalt enzyme was similar to that of the unmodified native (i.e., zinc) enzyme. These studies indicate that the specific metal ion present in the enzyme imposes certain structural and functional differences on the active site, leading to differing reactivities of specific amino acid residues and to a different alignment of the active-site-directed reagent in the two enzymes.  相似文献   

13.
Only lysine epsilon-amino groups (and the N-terminal alpha-amino group) in native subtilisin DY were reductively alkylated by glyceraldehyde in the presence of sodium cyanoborohydride. The modified protein molecule was cleaved by TosPheCH2Cl-trypsin or cyanogen bromide and the two sets of peptides obtained were fractionated and purified by gel filtration and HPLC. For determination of the degree of modification of each lysine residue, selected peptides were subjected to sequence analysis combined with quantitative estimation of the containing PTH-Lys and PTH-epsilon-DHP-Lys. The data obtained showed that the lysine residues in positions 12, 15, 27, 43, 136, 141, 265 were entirely modified, those in positions 170, 184, 237 were partially modified, and Lys22 and Lys94 were unaccessible for the reagent. The caseinolytic activity decreased by 23% when the maximum number of lysine residues (8.6 of the total 12 residues) in subtilisin DY were modified. The CD-spectra of native and modified enzyme showed only slight differences. Both these experiments suggest that the lysine residues do not take part directly in the catalytic reaction but are responsible for maintaining the native three-dimensional enzyme structure. The data obtained for the accessibility of the different lysine residues in subtilisin DY correlated very well with the positions of these residues in a video model of the structure of subtilisin Carlsberg, thus suggesting that the spatial structures of these two enzymes are very similar.  相似文献   

14.
The amino acid sequence of the iron-sulfur-flavoprotein, trimethylamine dehydrogenase, isolated from the bacterium W3A1 has been deduced from the x-ray diffraction pattern obtained at 2.4-A resolution. This sequence has been compared to portions of the primary sequence derived by gas-phase sequencing of isolated peptides obtained from cyanogen bromide and endoprotease Arg-C and Asp-N digestions of the purified enzyme. A consensus sequence has resulted and is comprised of 729 amino acids with Ala at both NH2- and COOH-terminal positions. The consensus sequence contains 13 cysteine residues. Approximately 80% of the sequence has been confirmed by direct sequencing with approximately 81% agreement with the x-ray deduced sequence. The calculated subunit molecular mass of the apoenzyme is 78,899 Da, in good agreement with published values of approximately 83,000. The anomalous scattering map from the native protein has also been shown to provide accurate information about the positions of most of the weak anomalous scattering centers such as sulfur or phosphorus atoms and to complement x-ray or chemical sequencing methods.  相似文献   

15.
Tyrosine residues 311 and 345 of the beta subunit of the bovine heart mitochondrial F1-ATPase (MF1) are present on the same peptide when the enzyme is fragmented with cyanogen bromide. Maximal inactivation of MF1 with 7-chloro-4-nitro[14C]benzofurazan [( 14C]Nbf-Cl) derivatizes tyrosine-311 in a single beta subunit. Cyanogen bromide digests of MF1 containing the [14C]Nbf-O-derivative of tyrosine-beta 311 were submitted to reversed-phase HPLC, with and without prior reduction of the nitro group on the incorporated reagent with dithionite. The retention time of the radioactive cyanogen bromide peptide was shifted substantially by reduction. When a cyanogen bromide digest of MF1 inactivated with 5'-p-fluorosulfonylbenzoyl[3H]inosine [( 3H]FSBI), which proceeds with derivatization of tyrosine-345 in a single beta subunit, was submitted to HPLC under the same conditions, the fragment labeled with 3H eluted with the same retention time as the [14C]Nbf-O-derivative before reduction. Doubly labeled enzyme was prepared by first derivatizing Tyr-beta 311 with [14C]Nbf-Cl and then derivatizing tyrosine-beta 345 with [3H]FSBI with and without reducing the [14C]Nbf-O-derivative of tyrosine-beta 311 with dithionite before modification with [3H]FSBI. The doubly labeled enzyme preparations were digested with cyanogen bromide and submitted to HPLC. The 14C and 3H in the cyanogen bromide digest prepared from doubly labeled enzyme not submitted to reduction eluted together. In contrast, the 14C and 3H in the digest prepared from doubly labeled enzyme which had been reduced eluted separately. From these results it is concluded that different beta subunits are derivatized when MF1 is doubly labeled with [14C]Nbf-Cl and [3H]FSBI.  相似文献   

16.
A homogeneous preparation of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) with a specific activity of 3.88 U/mg protein was isolated from pea (Pisum sativum L.) leaves. The molecular mass of the G6PDH is 79 +/- 2 kD. According to SDS-PAGE, the molecular mass of the enzyme subunit is 40 +/- 3 kD. The Km values for glucose-6-phosphate and NADP are 2 and 0.5 mM, respectively. The enzyme has a pH optimum of 8.0. Mg2+, Mn2+, and Ca2+ activate the enzyme at concentrations above 1 mM. Galactose-6-phosphate and fructose-6-phosphate inhibit the G6PDH from pea leaves. Fructose-1, 6-bisphosphate and galactose-1-phosphate are enzyme activators. NADPH is a competitive inhibitor of the G6PDH with respect to glucose-6-phosphate (Ki = 0.027 mM). ATP, ADP, AMP, UTP, NAD, and NADH have no effect on the activity of the enzyme.  相似文献   

17.
SIE AP mass spectra of tryptic peptides from the cyclo-GMP phosphodiesterase gamma-subunit and of chymotryptic peptides from the cyanogen bromide fragments of the same subunit exhibit MH+ ions for all theoretically possible smaller peptides. These facts show that SIE AP mass spectrometry can be successfully applied to peptide mapping using 1-2 nmoles of the compound.  相似文献   

18.
The hepatic enzyme bile acid CoA:amino acid N-acyltransferase (BAT) catalyzes the formation of amino acid-conjugated bile acids. In the present study, protein carbonylation of BAT, consistent with modification by reactive oxygen species and their products, was increased in hepatic homogenates of apolipoprotein E knock-out mice. 4-Hydroxynonenal (4HNE), an electrophilic lipid generated by oxidation of polyunsaturated long-chain fatty acids, typically reacts with the amino acids Cys, His, Lys, and Arg to form adducts, some of which (Michael adducts) preserve the aldehyde (i.e., carbonyl) moiety. Because two of these amino acids (Cys and His) are members of the catalytic triad of human BAT, it was proposed that 4HNE would cause inactivation of this enzyme. As expected, human BAT (1.6 microM) was inactivated by 4HNE in a dose-dependent manner. To establish the sites of 4HNE's reaction with BAT, peptides from proteolysis of 4HNE-treated, recombinant human BAT were analyzed by peptide mass fingerprinting and by electrospray ionization-tandem mass spectrometry using a hybrid linear ion trap Fourier transform-ion cyclotron resonance mass spectrometer. The data revealed that the active-site His (His362) dose-dependently formed a 4HNE adduct, contributing to loss of activity, although 4HNE adducts on other residues may also contribute.  相似文献   

19.
Transformed Syrian hamster embryo (NQT-SHE) fibroblasts do not synthesize the pro-alpha 1 subunit of type I procollagen, but secrete two modified forms of the pro-alpha 2(I) subunit that migrate more slowly than the normal chain during gel electrophoresis (Peterkofsky, B., and Prather, W. (1986) J. Biol. Chem. 261, 16818-16826). By electrophoretic analysis of cyanogen bromide and V8 protease-derived peptides from the collagenous domains of intra- and extracellular pro-alpha 2(I) chains, we find that the modification occurs almost exclusively in secreted molecules, is located in the region spanned by the cyanogen bromide peptide CB3,5, and persists when hydroxylation is inhibited. Thus, modification is due to a post-translational reaction other than hydroxylation. The modified chains appear to be secreted in the denatured state since: 1) helical structures formed at 4 degrees C under acidic conditions were unstable under neutral conditions at 37 degrees C; 2) conditions that destabilize the type I procollagen helix and thus inhibit its secretion, i.e. inhibition of proline hydroxylation or incorporation of the proline analog cis-hydroxyproline, did not affect secretion of the modified chains. The time courses for secretion of nonhelical modified chains from NQT-SHE and of hydroxylated helical procollagen I from control cells, as a proportion of total collagen synthesized, were similar. Although cis-hydroxyproline did not inhibit the secretion of the modified chains, it induced their rapid intracellular degradation.  相似文献   

20.
A method for the detection of collagenous proteins within cyanogen bromide digests of tissues has been devised. The peptides produced by digestion with cyanogen bromide were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a nitrocellulose filter. They were stained on the filter by incubation first with antibodies to collagen and then with a second antibody covalently linked to horseradish peroxidase, 4-chloro-1-naphthol was added, and the bound enzyme was assayed. This procedure is useful for the identification and characterization of collagens of types I, III, IV, and V in tissues. In addition, we have developed a sensitive and specific competitive enzyme-linked immunosorbent assay (ELISA) which is convenient for quantifying collagens (types I, III, and IV) in tissues. In this kind of assay, soluble cyanogen bromide peptides compete with cyanogen bromide peptides adsorbed onto a solid-phase support for rabbit anti-collagen antibodies. We determined the amount of bound antibody by using goat anti-rabbit immunoglobulin G covalently conjugated to horseradish peroxidase and then provided a substrate for the enzymatic reaction. The sensitivity range of the ELISA is 0.09 micrograms/ml in the region of 90 to 10% binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号