首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some basic properties of the adult locomotor activity rhythm and of the maternal induction of larval diapause in Calliphora vicina are described. Diapause responses in Nanda-Hamner experiments indicate that circadian rhythmicity is involved in photoperiodic time measurement (PPTM). However, although the locomotor rhythm shows long-lasting changes in free-running period (aftereffects of photoperiod and constant light) and occasional "splitting," thereby indicating a structural complexity to the circadian system, the overt rhythm may be used as an indicator of phase relationships (or "hands") of the covert system involved in PPTM, within the framework of a simple external-coincidence model for the diapause clock. Thus, in light-dark (LD) cycles close to "resonance" with the circadian pacemaker(s) (T 24, LD 12:12; T 48, LD 12:36; and T 72, LD 12:60), light is restricted to the subjective day and diapause incidence is high. In T 36 (LD 12:24) and T 60 (LD 12:48), light falls into the subjective night and illuminates the postulated light-sensitive phase (phi i), and diapause incidence is low. Within the primary range of entrainment, light invades the late subjective night in T 20 (LD 12:8), illuminates phi i, and causes low incidence of diapause; however, it invades the early subjective night in T 30 (LD 12:18) and diapause remains high.  相似文献   

2.
The relationship between circadian rhythms in the blood plasma concentrations of melatonin and rhythms in locomotor activity was studied in adult male sheep (Soay rams) exposed to 16-week periods of short days (8 hr of light and 16 hr of darkness; LD 8:16) or long days (LD 16:8) followed by 16-week periods of constant darkness (dim red light; DD) or constant light (LL). Under both LD 8:16 and LD 16:8, there was a clearly defined 24-hr rhythm in plasma concentrations of melatonin, with high levels throughout the dark phase. Periodogram analysis revealed a 24-hr rhythm in locomotor activity under LD 8:16 and LD 16:8. The main bouts of activity occurred during the light phase. A change from LD 8:16 to LD 16:8 resulted in a decrease in the duration of elevated melatonin secretion (melatonin peak) and an increase in the duration of activity corresponding to the changes in the ratio of light to darkness. In all rams, a significant circadian rhythm of activity persisted over the first 2 weeks following transfer from an entraining photoperiod to DD, with a mean period of 23.77 hr. However, the activity rhythms subsequently became disorganized, as did the 24-hr melatonin rhythms. The introduction of a 1-hr light pulse every 24 hr (LD 1:23) for 2 weeks after 8 weeks under DD reinduced a rhythm in both melatonin secretion and activity: the end of the 1-hr light period acted as the dusk signal, producing a normal temporal association of the two rhythms. Under LL, the 24-hr melatonin rhythms were disrupted, though several rams still showed periods of elevated melatonin secretion. Significant activity rhythms were either absent or a weak component occurred with a period of 24 hr. The introduction of a 1-hr dark period every 24 hr for 2 weeks after 8 weeks under LL (LD 23:1) failed to induce or entrain rhythms in either of the parameters. The occurrence of 24-hr activity rhythm in some rams under LL may indicate nonphotoperiodic entrainment signals in our experimental facility. Reproductive responses to the changes in photoperiod were also monitored. After pretreatment with LD 8:16, the rams were sexually active; exposure to LD 16:8, DD, or LL resulted in a decline in all measures of reproductive function. The decline was slower under DD than LD 16:8 or LL.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Circadian rhythms of wheel-running activity of the antelope ground squirrel (Ammospermophilus leucurus) were entrained by light-dark cycles (LD: 100 1x vs total darkness) with periods (T) between ca 23.75 and 24.75 hr. Two 1-hr light pulses per cycle ('skeleton photoperiods') with T = 24.25 hr as well as one 1-hr light pulse per cycle with Ts of 23.75 and 24.25 hr were effective in entraining the circadian activity rhythms in at least 50% of the antelope ground squirrels. Phase and period responses to single 1-hr light pulses were measured which depend on the initial phase and period of the rhythm. It is concluded that discrete (phasic) light input contributes to the mechanism of entrainment to LD cycles in diurnal rodents.  相似文献   

4.
The goal of this study was to discriminate between two hypotheses regarding how the circadian rhythm of pineal melatonin (MEL) production transmits photoperiodic information: (1) A circadian rhythm of sensitivity to MEL regulates the hormone's effect; (2) the duration of the MEL signal, rather than its circadian timing, is the critical parameter of the MEL rhythm. The experiment examined the response of pinealectomized (PINX) male Siberian hamsters to 10-hr (short-day-type) versus 6-hr (long-day-type) duration MEL infusions (10 ng/infusion) in cycles with period lengths (T) of 18, 24, 36, and 48 hr. After cannula implantation, animals were moved from LD 16:8 to LD 10:14 (lights-on from 0500 to 1500 hr, EST), where the timed infusions began. Additional T 24 cycles included as controls employed 18-hr MEL, 18-hr saline (SAL), and 10-hr SAL infusions: Body weight and food intake were measured weekly. After 6 weeks, animals were killed; blood samples were taken for radioimmunoassay (RIA) of serum follicle-stimulating hormone (FSH) and prolactin (PRL); and terminal body, epididymal white adipose tissue (EPIWAT), and paired testis weights were recorded. Six-hour MEL infusions failed to induce short-day-type effects, regardless of the period (T) of the infusion cycle. In contrast, compared to SAL and 6-hr MEL infusions, 10-hr MEL resulted in decreases in body, EPIWAT, and testis weights in T 24, but not in T 36 or T 48. In T 18, testis, body, and EPIWAT mass were decreased, but not to the same extent as in T 24. Similarly, daily 18-hr MEL infusions (T24) were less effective as a short-day stimulus than were 10-hr MEL infusions. The effectiveness of 10-hr, but not 6-hr, MEL infusions in T 18 and T 24 is consistent with the duration hypothesis and argues against the circadian hypothesis. Neither hypothesis could have predicted that all infusion cycles of T greater than or equal to 36 hr, regardless of the infusion durations, would fail to elicit short-day-type responses. This outcome suggests a need for relatively frequent (T less than 36 hr) MEL stimulation in addition to the requirement for adequate duration of each MEL infusion.  相似文献   

5.
Experimental photoperiods, presented either once only or repeatedly, were used to assess the oscillatory and hourglass properties of the photoperiodic clock in Japanese quail. Gonadectomized quail on 8-hr daylengths respond to a single skeleton photoperiod consisting of two 8-hr light pulses separated by 2 hr of darkness (i.e., LDLD 8:2:8:6) with a marked increase in secretion rate of luteinizing hormone (LH). This response suggests that the second light pulse interacts with a "photoinducible phase" (phi i) lying some 10-16 hr from "dawn" (start of the first light pulse). If, however, groups of quail maintained on 8-hr daylengths are transferred to continuous darkness (DD), and the position of the phi i is sought by a single 8-hr light pulse applied at various times on the first or third day of DD, then an increase in circulating LH is, at best, barely detectable. It would appear that a strongly responsive phi i does not recur rhythmically in DD. Instead, the light pulse apparently acts primarily as a "dawn" signal that triggers a single cycle of photoinducibility, since a second 8-hr light pulse, placed to begin 2 hr after the end of the first, induces a large increase in plasma LH. Similar results are obtained if any single 8-hr light pulse presented to animals held in darkness is preceded, 10 hr earlier, by a short "dawn" light signal. Such dawn signals can be effective when very short; a pulse of only 30 sec can cause a subsequent phi i. The dawn pulse is effective at any circadian phase and leads to a single cycle in photoinducibility. In contrast, a much longer light pulse (perhaps not less than 4 hr) is needed to interact with phi i if significant gonadotropin secretion is to be stimulated. In confirmation of the findings described above, we found that Nanda-Hammer lighting schedules have remarkably little effect in stimulating gonadotropin secretion in gonadectomized quail. There is, for example, a very marked difference between the effectiveness of "resonating" schedules such as LD 6:6, which stimulates a high LH secretion rate since each "inductive" light pulse is preceded by an appropriate "dawn" signal, and a theoretically effective schedule such as LD 6:30, which induces a very small response by comparison. Such schedules (even theoretically noninductive ones) can, however, be made very highly inductive if alternate light pulses are preceded by an appropriately positioned 15-min light pulse to act as "dawn."  相似文献   

6.
The site (intra- vs. extraocular) of the circadian clock driving an ocular melatonin rhythm in Japanese quail was investigated by alternately covering the left and right eyes of individual quail, otherwise held in constant light (LL), for 12-hr periods. This procedure exposed each eye to a light-dark (LD) 12:12 light cycle 180 degrees (12 hr) out of phase with the LD 12:12 light cycle experienced by the other eye. This protocol entrained the melatonin rhythm in the left eye of quail 180 degrees out of phase with the rhythm expressed in the right eye. These results are compatible with the hypothesis that an independent light-entrainable circadian pacemaker resides in each eye; they are incompatible with the hypothesis that a single (or functionally single) extraocular pacemaker drives the ocular melatonin rhythm in both eyes. However, the results are also compatible with a model in which two independent extraocular circadian pacemakers, each with an exclusive photic input from one eye, drive the ocular melatonin rhythm.  相似文献   

7.
The circadian rhythms of locomotor activity of the scorpion Leiurus quinqueslriatus were examined under different light-dark cycles and in free-running conditions. The circadian rhythm is bimodal in LD 12:12 with alternating cycles of temperature (35°-25°C) with high intensity (1300 lux) or in LD 12: 12 with constant temperature 35° C with 300 lux. In LD 12:12 (1300 lux), in long or in short light spans with constant temperature, the bimodal pattern is slightly changed with the appearance of a third minor peak of activity. In free-running conditions, the bimodal rhythm of locomotor activity persists in DD with T about 24 hr, but in LL the rhythm becomes unimodal with T about 24 hr. Cosinor and power spectrum analysis showed the presence of more than one periodic component. It seems that there is a correlation between the range of light regimens, temperature, light intensity and the coincidence of these components. These components are independently entrained by the environmental light cycle. The mechanism of entrainment of components is discussed.  相似文献   

8.
Circadian rhythms in many metabolic functions including neural (transmitters) and hormonal secretion appear to change with physiological condition. It is also reported that seasonal changes in photoperiodism/reproduction and other metabolic conditions may result from a temporal interaction of circadian neural oscillations that change seasonally. To test this hypothesis, the present study was designed to study the effect of temporal synergism of two neural oscillations (serotonin and dopamine) on relative photorefractoriness of Japanese quail.Serotonin and dopamine precursor drugs (5-HTP, 5-hydroxytryptophan and L-DOPA, L-dihydroxyphenylalanine) were administered (intraperitonially 5 mg/100 g body weight) at six different time intervals of 0, 4, 8, 12, 16 and 20 hr in sexually mature quail (>12 weeks old). The birds of control group received two daily injections of normal saline. The treatment was given for 13 days in continuous condition of light and then the quail were shifted to intermediate daylength (LD 13.5:10.5 for experiment 1) and short daylength (LD 8:16 for experiment 2). Six weeks following treatment, birds in intermediate daylength showed regressed cloacal gland and testicular activity except in 12-hr group, which exhibited gonadostimulatory condition. But birds of all the groups in short daylength showed complete regression of cloacal gland after 4 weeks of the treatment. In experiment 3, reproductively quiescent relative photorefractory quail maintained under intermediate daylength (LD 13.5:10.5) received 13 daily injections of 5-HTP and L-DOPA at the interval of 12 hr. At 6 weeks post-treatment, it was observed that unlike cloacal gland of control quail, which remained regressed, that of 12-hr quail showed significant development.These findings indicate that 12-hr temporal interaction of 5-HTP and L-DOPA administration maintained reproductive system in stimulated condition and prevented reproductive regression in photorefractory quail, but did not prevent the onset of scotosensitivity. It is concluded that the 12-hr temporal relationship of circadian serotonergic and dopaminergic oscillations not only eliminates photorefractoriness but may also re-establish photosensitivity in relative photorefractory quail. These findings suggest the regulatory role of neural oscillations and their temporal interaction in the regulation of neuroendocrine-gonadal axis with special reference to photosensitivity/refractoriness.  相似文献   

9.
BDF, male mice were studied over a 24-hr span in winter, spring, summer and fall. For three weeks prior to study, one-third of the animals were kept under a lighting regimen of 8 hr light alternating with 16 hr of darkness (LD 8:16), one-third on a lighting regimen of LD 12:12 and a remainder on a lighting regimen of LD 16:8. During each study, subgroups of animals on all three lighting regimens were killed at 4-hr intervals over a 24-hr span. Twenty minutes prior to being killed, the animals received 5yCi of [3Hthymidine/0.2 ml/20 gm of body weight intraperitoneally. The thymidine uptake in the DNA of the colon and of the small intestine were studied as an index of cell proliferation. A circadian rhythm in [3H]-thymiduie uptake in the colon was found and validated by cosinor analysis. This rhythm was similar in acrophase and amplitude in the animals kept on LD 8:16 and LD 12:12. Also in the mice on LD 16:8, there was a statistically significant circadian rhythm of ('HJ-thymidtne uptake in the DNA of the colon during all four seasons. The acrophases of this rhythm, however, varied widely suggesting free running. A circadian rhythm of pHJ-thymidine uptake in small intestine was less consistent. In animals on all three lighting regimens, however, a circannual variation of f'HJ-thymidine uptake in DNA in colon and small intestine was found with the highest uptake during summer. This study indicates that a lighting regimen of LD 16:8 does not reliably synchronize the circadian rhythm of [3H]-thymidine uptake in the colon. It further shows a circannual rhythm of this function in the colon and in the small intestine which persists under three lighting regimens (LD 8:16, 12:12 and 16:8) maintained for three to four weeks prior to being killed.  相似文献   

10.
BDF, male mice were studied over a 24-hr span in winter, spring, summer and fall. For three weeks prior to study, one-third of the animals were kept under a lighting regimen of 8 hr light alternating with 16 hr of darkness (LD 8:16), one-third on a lighting regimen of LD 12:12 and a remainder on a lighting regimen of LD 16:8. During each study, subgroups of animals on all three lighting regimens were killed at 4-hr intervals over a 24-hr span. Twenty minutes prior to being killed, the animals received 5yCi of [3Hthymidine/0.2 ml/20 gm of body weight intraperitoneally. The thymidine uptake in the DNA of the colon and of the small intestine were studied as an index of cell proliferation. A circadian rhythm in [3H]-thymiduie uptake in the colon was found and validated by cosinor analysis. This rhythm was similar in acrophase and amplitude in the animals kept on LD 8:16 and LD 12:12. Also in the mice on LD 16:8, there was a statistically significant circadian rhythm of ('HJ-thymidtne uptake in the DNA of the colon during all four seasons. The acrophases of this rhythm, however, varied widely suggesting free running. A circadian rhythm of pHJ-thymidine uptake in small intestine was less consistent. In animals on all three lighting regimens, however, a circannual variation of f'HJ-thymidine uptake in DNA in colon and small intestine was found with the highest uptake during summer. This study indicates that a lighting regimen of LD 16:8 does not reliably synchronize the circadian rhythm of [3H]-thymidine uptake in the colon. It further shows a circannual rhythm of this function in the colon and in the small intestine which persists under three lighting regimens (LD 8:16, 12:12 and 16:8) maintained for three to four weeks prior to being killed.  相似文献   

11.
The cuticle deposition rhythm, which is observed in the apodeme of the furca in the thorax, is controlled by a peripheral circadian clock in the epidermal cells and entrained to light-dark (LD) cycles via CRYPTOCHROME (CRY) in Drosophila melanogaster. In the present study, we examined the effects of temperature (TC) cycles and the combination of LD and TC cycles on entrainment of the cuticle deposition rhythm. The rhythm was entrained to TC cycles, whose period was 28 h. In T = 21 and 24 h, the rhythm was entrained to TC cycles in some individuals. CRY is not necessary for temperature entrainment of the cuticle deposition rhythm because the rhythm in cry(b) (lacking functional CRY) was entrained to TC cycles. Temperature entrainment of the rhythm was achieved even when the thoraxes or furcae were cultured in vitro, suggesting that the mechanism for temperature entrainment is independent of the central clock in the brain and the site of the thermoreception resides in the epidermal cells. When LD and TC cycles with different periods were applied, the rhythm was entrained to LD cycles with a slight influence of TC cycles. Thus, the LD cycle is a stronger zeitgeber than the TC cycle. The variance of the number of the cuticle layers decreased in the flies kept under LD and TC cycles with the same period in which the thermophase coincided with the photophase. Therefore, we conclude that LD and TC cycles synergistically entrain the rhythm. Synergistic effects of LD and TC cycles on entrainment were also observed even when the thoraxes were cultured in vitro, suggesting that the light and temperature information is integrated within the peripheral circadian system.  相似文献   

12.
The circadian system is organized in a hierarchy of multiple oscillators, with the suprachiasmatic nucleus (SCN) as the master oscillator in mammals. The SCN is formed by a group of coupled cell oscillators. Knowledge of this coupling mechanism is essential to understanding entrainment and the expression of circadian rhythms. Some authors suggest that light-dark (LD) cycles with periods near the limit of entrainment may be good models for promoting internal desynchronization, providing knowledge about the coupling mechanism. As such, we evaluated the circadian activity rhythm (CAR) pattern of marmosets in LD cycles at lower limits of entrainment in order to study induced internal dissociation. To that end, two experiments were conducted: (1) 6 adult females were under symmetrical LD cycles T21, T22 and T21.5 for 60, 35 and 48 days, respectively; and (2) 4 male and 4 female adults were under T21 for 24 days followed by 18 days of LL, back to T21 for 24 days, followed by 14 days of LL. The CAR of each animal was continuously recorded. In experiment 1, vocalizations were also recorded. Under Ts shorter than 24 days, a dissociation pattern was observed for CAR and vocalizations. Two simultaneous circadian components emerged, one with the same period as the LD cycle, called the light-entrained component, and the other in free-running, denominated the non-light-entrained component. Both components were displayed in the CAR for all the animals in T21, five animals (83.3%) in T21.5 and two animals (33.3%) in T22. Our results are in accordance with the multioscillatory nature of the circadian system. Dissociation is partial synchronization to the LD cycle, with at least one group of oscillators synchronized by relative coordination and masking, while another group of oscillators free runs, but is also masked by the LD cycle. Since only T21 promoted the emergence of both circadian components in the circadian rhythms of all marmosets, it was considered the promoter period of circadian rhythm dissociation in this species, and is proposed as a good animal model for forced desynchronization in non-human diurnal primates.  相似文献   

13.
Phase relationships of the circadian rhythms of blood ethanol clearance (metabolic) rates and body temperature were studied in rats successively exposed to 4 illumination regimens: LD (light from 0800-2000 hr), DL (light from 2000-0800 hr), constant darkness (DD) and, lastly, constant light (LL). After a 4-wk standardization to each regimen, body temperatures were taken at 9 × 4-hr intervals to establish baseline circadian profiles. One week later, groups (N = 8) received 1.5 g/kg ethanol (i.p.) at 6 equally spaced timepoints during a 24-hr span, when temperatures were again measured. Ethanol clearance rates were estimated from decreasing blood ethanol levels sampled every 20 min from 60-200 min after dosing, and the resultant elimination curves were subjected to cosinor analysis. These studies show for the first time that the high amplitude circadian rhythm in ethanol metabolism persists under constant conditions of illumination (DD and LL), demonstrating that it may well be a truly internal circadian rhythm and not a response to exogenous cues of the light/dark cycle. During both LD and DL, maximal and minimal ethanol clearance rates fell near the end of the dark and light phases, respectively, and followed circadian peak and trough control temperatures by approximately 6 hr. A fixed internal phase relationship between the core body temperature and the circadian rhythm in ethanol metabolism is demonstrated, thus establishing the rhythm in body temperature as a suitable and convenient internal marker rhythm for studies of the metabolism of low-to-moderate ethanol doses. These studies demonstrate that the phase relationships of blood ethanol clearance rate and body temperature can be manipulated by the illumination regimen selected, an observation of both basic and practical importance.  相似文献   

14.
The activities of 23 brain or liver enzymes were studied in 5-6 week old C57BL/6JNctr male and female mice that had been fed ad libitum and standardized for 2 weeks to either (1) 12 hr of light (0600-1800) alternating with 12 hr of darkness (1800-0600) (LD 12:12), (2) staggered sequences of 12 hr of light and 12 hr of dark (SLD 12:12) or (3) continuous illumination (LL 12:12) for 2 weeks. Mice in the LD 12:12 and LL 12:12 experiments were killed at 4 hr intervals along a 24-hr span in order to sample at six different circadian stages. Lighting schedules for mice in the SLD 12:12 experiment were organized such that six different circadian stages were sampled when all mice were killed at one time of day.

All 23 enzymes demonstrated a prominent circadian rhythm in at least one of the experiments. Moreover, about two-thirds of the enzymes in LD and SLD 12:12 had a statistically significant fit to a 24-hr cosine curve, while only one-third of the enzymes in LL 12:12 had significant fits to cosine curves. Peak activities of enzymes from mice in LD 12:12 were clustered at the time of transition from light to dark. This was also the trend for the activities of enzymes from mice in SLD 12:12, but resynchronization did not appear completed within the 2-week span. This, along with the observation that mesors (mean 24-hr activity) were reduced and amplitudes altered, indicated that the 2-week standardization period was not sufficient for some enzymes. Times of peak activities, mesors and amplitudes were affected for most enzymes from mice in the LL 12:12 environment. This suggests that individual mice became desynchronized from one another with respect to the original light-dark schedule and that rhythms were altered or lost because individual mice were free running with frequencies different from 24 hr.  相似文献   

15.
Circadian responses were studied using the perching activity of house sparrows (Passer domesticus). The sparrows were subjected to single or double 4-hr light pulses (the single pulses or the second pulses of the doublets scanned 24 hr) in the first cycle after previous entrainment to a light-dark cycle (LD 12:12). The differences in times at which the birds commenced perch-hopping in LD 12:12 before the pulses and in the five cycles immediately following the pulses were determined (phase shifts). A 24-hr time profile for phase shifts in response to single light pulses replicated our previous study: Early-night pulses delayed the rhythm (-1.7 hr), while late-night pulses advanced the rhythm (+3.8 hr). After pretreatment with a light pulse that advanced the birds +2.7 hr, the resetting curve was advanced. There were no delays; the range of average shifts was +0.1 hr to +6.2 hr. After pretreatment with a light pulse that delayed the birds -1.7 hr, the resetting curve was delayed. Average delays as much as -1.1 hr and advances up to +2.1 hr were measured. The data for double pulses were interpreted from predictions made from single-pulse data.  相似文献   

16.
The locomotor activity rhythm of the media workers of the ant species Camponotus compressus was monitored under constant conditions of the laboratory to understand the role of circadian clocks in social organization. The locomotor activity rhythm of most ants entrained to a 24 h light/dark (12:12 h; LD) cycle and free-ran under constant darkness (DD) with circadian periodicities. Under entrained conditions about 75% of media workers displayed nocturnal activity patterns, and the rest showed diurnal activity patterns. In free-running conditions these ants displayed three types of activity patterns (turn-around). The free-running period (τ) of the locomotor activity rhythm of some ants (10 out of 21) showed period lengthening, and those of a few (6 out of 21) showed period shortening, whereas the locomotor activity rhythm of the rest of the ants (5 out of 21) underwent large phase shifts. Interestingly, the pre-turn-around τ of those ants that showed nocturnal activity patterns during earlier LD entrainment was shorter than 24 h, which became greater than 24 h after 6-9 days of free-run in DD. On the other hand, the pre-turn-around τ of those ants, which exhibited diurnal patterns during earlier LD entrainment, was greater than 24 h, which became shorter than 24 h after 6-9 days of free-run in DD. The patterns of activity under LD cycles and the turn-around of activity patterns in DD regime suggest that these ants are shift workers in their respective colonies, and they probably use their circadian clocks for this purpose. Circadian plasticity thus appears to be a general strategy of the media workers of the ant species C. compressus to cope with the challenges arising due to their roles in the colony constantly exposed to a fluctuating environment.  相似文献   

17.
The activities of 23 brain or liver enzymes were studied in 5–6 week old C57BL/6JNctr male and female mice that had been fed ad libitum and standardized for 2 weeks to either (1) 12 hr of light (0600-1800) alternating with 12 hr of darkness (1800-0600) (LD 12:12), (2) staggered sequences of 12 hr of light and 12 hr of dark (SLD 12:12) or (3) continuous illumination (LL 12:12) for 2 weeks. Mice in the LD 12:12 and LL 12:12 experiments were killed at 4 hr intervals along a 24-hr span in order to sample at six different circadian stages. Lighting schedules for mice in the SLD 12:12 experiment were organized such that six different circadian stages were sampled when all mice were killed at one time of day.

All 23 enzymes demonstrated a prominent circadian rhythm in at least one of the experiments. Moreover, about two-thirds of the enzymes in LD and SLD 12:12 had a statistically significant fit to a 24-hr cosine curve, while only one-third of the enzymes in LL 12:12 had significant fits to cosine curves. Peak activities of enzymes from mice in LD 12:12 were clustered at the time of transition from light to dark. This was also the trend for the activities of enzymes from mice in SLD 12:12, but resynchronization did not appear completed within the 2-week span. This, along with the observation that mesors (mean 24-hr activity) were reduced and amplitudes altered, indicated that the 2-week standardization period was not sufficient for some enzymes. Times of peak activities, mesors and amplitudes were affected for most enzymes from mice in the LL 12:12 environment. This suggests that individual mice became desynchronized from one another with respect to the original light-dark schedule and that rhythms were altered or lost because individual mice were free running with frequencies different from 24 hr.  相似文献   

18.
Adult male crickets (Gryllus bimaculatus) show a nocturnal circadian locomotor rhythm, which is driven by the pacemaker in the optic lamina-medulla complex and synchronizes to the light-dark (LD) cycle received by the compound eye. To see whether there was any specially differentiated circadian photoreceptor area in the eye, we examined the effect of a partial reduction of various areas of the compound eye, in addition to a removal of the contralateral optic lamina-medulla-compound eye complex, on entrainability of the locomotor rhythm. All operated animals showed a response to the LD cycle in their locomotor rhythm, no matter which area of the eye was left intact: They either stably entrained to an LD cycle or showed a sign of weak entrainment. The capacity for stable entrainment was still retained when only 262 ommatidia were left. Transient cycles needed for re-entrainment, following a 6-hr phase advance of the LD cycle, were measured in 20 reduced-eye animals showing clear stable entrainment. They were in inverse proportion to the number of ommatidia in the reduced eye: The fewer ommatidia there were, the more transient cycles were observed (r = -0.76, p less than 0.001). These results suggest that almost the whole area of the compound eye may contain circadian photoreceptors, and that the photic information from each ommatidium may additively affect the circadian clock to entrain via neural integration mechanisms.  相似文献   

19.
Blinding by enucleation has a dramatic effect on the circadian activity rhythm of Japanese quail. The activity patterns of enucleated birds held under 24-hr light-dark cycles are disrupted, although entrainment can persist in many birds. In constant darkness (DD), blinded birds are rendered arrhythmic. These results demonstrate that the eyes are a major component of the circadian system, and that insofar as enucleation produces arrhythmicity in DD, the eyes' role is not merely a photosensory one. The eyes of quail can synthesize and secrete the hormone melatonin, which has been implicated as a blood-borne messenger relaying timing information between elements of the circadian system in some avian species. However, the way in which the eyes communicate with the rest of the circadian system in quail appears to be neural, since (1) optic nerve section produces the same effects as blinding by enucleation on the circadian activity rhythm, and (2) eyes subjected to optic nerve section retain their ability to synthesize and secrete melatonin.  相似文献   

20.
ABSTRACT

Most work looking at nonphotic effects on circadian rhythms is conducted when animals are held under freerunning conditions, usually constant darkness. However, for nonphotic effects to be functionally significant, they should be demonstrable under conditions in which most animals live, i.e., a 24-hr light–dark cycle (LD). Syrian hamsters held in LD 6:18 were administered nonphotic stimulation in the form of a 3-hr confinement to a novel wheel starting about 6 hr before the start of their normal nightly activity bout. This resulted in a 2.5-hr advance of their activity rhythm on the next day that gradually receded to about 1.5 hr over the next 10 days. When hamsters held in LD 6:18 were given five novel wheel confinements over 13 days their nightly activity onset advanced 3 hr and remained at that phase for at least 2 weeks. Home cage wheel deprivation experiments indicated that high levels of home cage activity are necessary to maintain the advanced phase. These results show that nonphotic stimulation can have large, long-lasting effects on daily rhythms in LD and suggest a possible mechanism whereby nocturnal rodents might achieve phase flexibility in response to seasonal changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号