首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Constituent chemicals in garlic extract are known to induce phase I and phase II enzymes in rodent livers. Here we have utilized Car(+/+) and Car(-/-) mice to demonstrate that the nuclear xenobiotic receptor CAR regulated the induction of the estrogen sulfotransferase Sult1e1 gene by diallyl sulfide (DAS) treatment in mouse liver. DAS treatment caused CAR accumulation in the nucleus, resulting in a remarkable increase of SULT1E1 mRNA (3,200 fold) and protein in the livers of Car(+/+) females but not of Car(-/-) female mice. DAS also induced other CAR-regulated genes such as Cyp2b10, Cyp3a11 and Gadd45β. Compared with the rapid increase of these mRNA levels, which began as early as 6 hours after DAS treatment, the levels of SULT1E1 mRNA began increasing after 24 hours. This slow response to DAS suggested that CAR required an additional factor to activate the Sult1e1 gene or that this activation was indirect. Despite the remarkable induction of SULT1E1, there was no decrease in the serum levels of endogenous E2 or increase of estrone sulfate while the clearance of exogenously administrated E2 was accelerated in DAS treated mice.  相似文献   

3.
《遗传学报》2022,49(12):1093-1100
It has been reported recently that there are two distinct subpopulations of capillary endothelial cells in the mammalian lungs: gCap (general capillary) and aCap (aerocyte). They are identified by two unique markers, respectively: plasmalemmal vesicle-associated protein (PLVAP) and carbonic anhydrase IV (CAR4). Here, we report two novel knock-in mouse lines Plvap-CreER and Car4-CreER, which genetically target gCap and aCap, respectively. Induced by tamoxifen, the Plvap-CreER and Car4-CreER alleles mediate specific and efficient Cre-loxP recombinations in PLVAP+ gCap and CAR4+ aCap, respectively, in the lungs. These two mouse lines are useful genetic tools to investigate cell fates and functions of PLVAP+ and CAR4+ cells in lung homeostasis, injury and repair.  相似文献   

4.
The orphan nuclear receptor CAR (NR1I3) has been characterized as a central component in the coordinate response to xenobiotic and endobiotic stress. In this study, we demonstrate that CAR plays a pivotal function in energy homeostasis and establish an unanticipated metabolic role for this nuclear receptor. Wild-type mice treated with the synthetic CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) exhibited decreased serum concentration of the thyroid hormone (TH) thyroxine (T(4)). However, treatment of Car(-/-) mice with TCPOBOP failed to elicit these changes. To examine whether CAR played a role in the regulation of TH levels under physiological conditions, wild-type and Car(-/-) mice were fasted for 24 h, a process known to alter TH metabolism in mammals. As expected, the serum triiodothyronine and T(4) concentrations decreased in wild-type mice. However, triiodothyronine and T(4) levels in fasted Car(-/-) mice remained significantly higher than those in fasted wild-type animals. Concomitant with the changes in serum TH levels, both CAR agonist treatment and fasting induced the expression of CAR target genes (notably, Cyp2b10, Ugt1a1, Sultn, Sult1a1, and Sult2a1) in a receptor-dependent manner. Importantly, the Ugt1a1, Sultn, Sult1a1, and Sult2a1 genes encode enzymes that are capable of metabolizing TH. An attenuated reduction in TH levels during fasting, as observed in Car(-/-) mice, would be predicted to increase weight loss during caloric restriction. Indeed, when Car(-/-) animals were placed on a 40% caloric restriction diet for 12 weeks, Car(-/-) animals lost over twice as much weight as their wild-type littermates. Thus, CAR participates in the molecular mechanisms contributing to homeostatic resistance to weight loss. These data imply that CAR represents a novel therapeutic target to uncouple metabolic rate from food intake and has implications in obesity and its associated disorders.  相似文献   

5.
The nuclear receptor constitutive androstane receptor (CAR) (NR1I3) regulates hepatic genes involved in xenobiotic detoxification as well as genes involved in energy homeostasis. We provide data that extend the role of CAR to regulation of serum triglyceride levels under conditions of metabolic/nutritional stress. The typically high serum triglyceride levels of ob/ob mice were completely normalized when crossed onto a Car(-/-) (mice deficient for the Car gene) genetic background. Moreover, increases in serum triglycerides observed after a high-fat diet (HFD) regime were not observed in Car(-/-) animals. Conversely, pharmacological induction of CAR activity using the selective mouse CAR agonist TCPOBOP during HFD feeding resulted in a CAR-dependent increase in serum triglyceride levels. A major regulator of hepatic fatty oxidation is the nuclear receptor PPARalpha (NR1C1). The expression of peroxisome proliferator-activated receptor alpha (PPARalpha) target genes was inversely related to the activity of CAR. Consistent with these observations, Car(-/-) animals exhibited increased hepatic fatty acid oxidation. Treatment of mice with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) significantly decreased expression of PPARalpha mRNA as well as Cyp4a14, CPT1alpha, and cytosolic Acyl-CoA thioesterase (CTE) in the liver. These data have implications in disease therapy such as for diabetes and nonalcoholic steatohepatitis (NASH).  相似文献   

6.
7.
8.
Various drugs such as phenobarbital (PB) trigger translocation of constitutive active/adrostane receptor (CAR) from the cytoplasm into the nucleus of mouse liver cells without directly binding to the receptor. We have now characterized the guanine nucleotide exchange factor epithelial cell-transforming gene 2 (ECT2) as a PB-inducible factor as well as a cellular signal that represses PB-triggered nuclear translocation of CAR. When CFP-tagged ECT2 was co-expressed with YFP-tagged CAR in the liver of Car(-/-) mice, ECT2 repressed CAR nuclear translocation. Coexpression of various deletion mutants delineated this repressive activity to the tandem Dbl homology/pleckstrin homology domains of ECT2 and to their cytosolic expression. CAR directly bound to the PH domain. Thus, ECT2 may comprise a part of the PB response signal regulating the intracellular trafficking of CAR.  相似文献   

9.
Summary The carbonic anhydrase (CA)-like protein, CA VIII, lacks the typical carbon dioxide hydrase activity of the CA isozymes. However, the high degree of amino acid sequence similarity between the products of the mouse and the human CA VIII genes suggests an important biological function. We have attempted to investigate the function of this gene in mammalian development by conducting an in situ hybridization study on sagittal sections of mouse embryos at gestation days of 9.5–16.5 using a 35S-labelled riboprobe. Results indicate that this gene (called Car8 in mice) is expressed as early as day 9.5 in a variety of organs including liver, branchial arches, neuroepithelium and developing myocardium. Between days 10.5 and 12.5, it showed a widespread distribution of mRNA expression that became more restricted as development progressed. The level of expression of Car8 mRNA was relatively high in the brain, liver, lung, heart, gut, thymus and epithelium covering the head and the oronasal cavity. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

10.
11.
Carbonic anhydrase III is a cytosolic protein which is particularly abundant in skeletal muscle, adipocytes, and liver. The specific activity of this isozyme is quite low, suggesting that its physiological function is not that of hydrating carbon dioxide. To understand the cellular roles of carbonic anhydrase III, we inactivated the Car3 gene. Mice lacking carbonic anhydrase III were viable and fertile and had normal life spans. Carbonic anhydrase III has also been implicated in the response to oxidative stress. We found that mice lacking the protein had the same response to a hyperoxic challenge as did their wild-type siblings. No anatomic alterations were noted in the mice lacking carbonic anhydrase III. They had normal amounts and distribution of fat, despite the fact that carbonic anhydrase III constitutes about 30% of the soluble protein in adipocytes. We conclude that carbonic anhydrase III is dispensable for mice living under standard laboratory husbandry conditions.  相似文献   

12.
Calcium dysregulation is causally linked with various forms of neuropathology including seizure disorders, multiple sclerosis, Huntington’s disease, Alzheimer’s, spinal cerebellar ataxia (SCA) and chronic pain. Carbonic anhydrase-8 (Car8) is an allosteric inhibitor of inositol trisphosphate receptor-1 (ITPR1), which regulates intracellular calcium release fundamental to critical cellular functions including neuronal excitability, neurite outgrowth, neurotransmitter release, mitochondrial energy production and cell fate. In this report we test the hypothesis that Car8 regulation of ITPR1 and cytoplasmic free calcium release is critical to nociception and pain behaviors. We show Car8 null mutant mice (MT) exhibit mechanical allodynia and thermal hyperalgesia. Dorsal root ganglia (DRG) from MT also demonstrate increased steady-state ITPR1 phosphorylation (pITPR1) and cytoplasmic free calcium release. Overexpression of Car8 wildtype protein in MT nociceptors complements Car8 deficiency, down regulates pITPR1 and abolishes thermal and mechanical hypersensitivity. We also show that Car8 nociceptor overexpression alleviates chronic inflammatory pain. Finally, inflammation results in downregulation of DRG Car8 that is associated with increased pITPR1 expression relative to ITPR1, suggesting a possible mechanism of acute hypersensitivity. Our findings indicate Car8 regulates the ITPR1-cytosolic free calcium pathway that is critical to nociception, inflammatory pain and possibly other neuropathological states. Car8 and ITPR1 represent new therapeutic targets for chronic pain.  相似文献   

13.
14.
Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired fluid secretion. No change in Cl(-)/HCO(3)(-) exchanger activity was detected in Nhe2-deficient mice. Conversely, Cl(-)/HCO(3)(-) exchanger activity increased nearly 4-fold in Nhe1-deficient mice, despite only minimal or any change in mRNA and protein levels of the anion exchanger Ae2. Acetazolamide completely blocked the increase in Cl(-)/HCO(3)(-) exchanger activity in Nhe1-null mice suggesting that increased anion exchange required carbonic anhydrase activity. Indeed, the parotid glands of Nhe1(-/-) mice expressed higher levels of carbonic anhydrase 2 (Car2) polypeptide. Moreover, the enhanced Cl(-)/HCO(3)(-) exchange activity was accompanied by an increased abundance of Car2.Ae2 complexes in the parotid plasma membranes of Nhe1(-/-) mice. Anion exchanger activity was also significantly reduced in Car2-deficient mice, consistent with an important role of a putative Car2.Ae2 HCO(3)(-) transport metabolon in parotid exocrine cell function. Increased abundance of this HCO(3)(-) transport metabolon is likely one of the multiple compensatory changes in the exocrine parotid gland of Nhe1(-/-) mice that together attenuate the severity of in vivo electrolyte and acid-base balance perturbations.  相似文献   

15.
16.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

17.
The constitutively active receptor (CAR) transactivates a distal enhancer called the phenobarbital (PB)-responsive enhancer module (PBREM) found in PB-inducible CYP2B genes. CAR dramatically increases its binding to PBREM in livers of PB-treated mice. We have investigated the cellular mechanism of PB-induced increase of CAR binding. Western blot analyses of mouse livers revealed an extensive nuclear accumulation of CAR following PB treatment. Nuclear contents of CAR perfectly correlate with an increase of CAR binding to PBREM. PB-elicited nuclear accumulation of CAR appears to be a general step regulating the induction of CYP2B genes, since treatments with other PB-type inducers result in the same nuclear accumulation of CAR. Both immunoprecipitation and immunohistochemistry studies show cytoplasmic localization of CAR in the livers of nontreated mice, indicating that CAR translocates into nuclei following PB treatment. Nuclear translocation of CAR also occurs in mouse primary hepatocytes but not in hepatocytes treated with the protein phosphatase inhibitor okadaic acid. Thus, the CAR-mediated transactivation of PBREM in vivo becomes PB responsive through an okadaic acid-sensitive nuclear translocation process.  相似文献   

18.
Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.  相似文献   

19.
Interest in manipulating gene expression in olfactory sensory neurons (OSNs) has led to the use of adenoviruses (AdV) as gene delivery vectors. OSNs are the first order neurons in the olfactory system and the initial site of odor detection. They are highly susceptible to adenovirus infection although the mechanism is poorly understood. The Coxsackie-Adenovirus receptor (CAR) and members of the integrin family have been implicated in the process of AdV infection in various systems. Multiple serotypes of AdV efficiently bind to the CAR, leading to entry and infection of the host cell by a mechanism that can also involve integrins. Cell lines that do not express CAR are relatively resistant, but not completely immune to AdV infection, suggesting that other mechanisms participate in mediating AdV attachment and entry. Using in situ hybridization and western blot analyses, we show that OSNs and olfactory bulbs (OB) of mice express abundant CAR mRNA at embryonic and neonatal stages, with progressive diminution during postnatal development. By contrast to the olfactory epithelium (OE), CAR mRNA is still present in the adult mouse OB. Furthermore, despite a similar postnatal decline, CAR protein expression in the OE and OB of mice continues into adulthood. Our results suggest that the robust AdV infection observed in the postnatal olfactory system is mediated by CAR and that expression of even small amounts of CAR protein as seen in the adult rodent, permits efficient AdV infection and entry. CAR is an immunoglobulin domain-containing protein that bears homology to cell-adhesion molecules suggesting the possibility that it may participate in organization of the developing olfactory system.  相似文献   

20.
The coxsackie- and adenovirus receptor (CAR) is a transmembrane protein belonging to the immunoglobulin superfamily. The function of CAR as a virus receptor has been extensively analyzed, while its physiological role and expression pattern in adult tissues have remained less clear. CAR associates with epithelial tight junctions in vitro and mediates cell-cell adhesion. Using a set of affinity-purified antibodies, we show that CAR is predominantly expressed in epithelial cells lining the body cavities in adult mice, where it specifically co-localizes with the tight junction components ZO-1 and occludin. Notably, CAR could not be detected in endothelial cells of the vasculature, including brain capillaries. CAR expression correlated positively with the maturity of tight junctions and inversely with permeability. With a few exceptions, the two known CAR isoforms were co-expressed in most epithelial cells analyzed. A CAR mutant lacking the intracellular tail over-expressed in transgenic mice was diffusely localized over the plasma membrane, showing the importance of this domain for correct subcellular localization in vivo. We conclude that CAR is localized to epithelial tight junctions in vivo where it may play a role in the regulation of epithelial permeability and tissue homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号