首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this report, we describe new HDAC inhibitors designed to exploit a unique sub-pocket in the HDAC8 active site. These compounds were based on inspection of the available HDAC8 crystal structures bound to various inhibitors, which collectively show that the HDAC8 active site is unusually malleable and can accommodate inhibitor structures that are distinct from the canonical 'zinc binding group-linker-cap group' structures of SAHA, TSA, and similar HDAC inhibitors. Some inhibitors based on this new scaffold are >100-fold selective for HDAC8 over other class I and class II HDACs with IC(50) values <1microM against HDAC8. Furthermore, treatment of human cells with the inhibitors described here shows a unique pattern of hyperacetylated proteins compared with the broad-spectrum HDAC inhibitor TSA.  相似文献   

2.
The synthesis and preliminary studies of the SAR of novel 3,5-diarylazole inhibitors of Protein Kinase D (PKD) are reported. Notably, optimized compounds in this class have been found to be active in cellular assays of phosphorylation-dependant HDAC5 nuclear export, orally bioavailable, and highly selective versus a panel of additional putative histone deacetylase (HDAC) kinases. Therefore these compounds could provide attractive tools for the further study of PKD / HDAC5 signaling.  相似文献   

3.
It has been widely debated whether class IIa HDACs have catalytic deacetylase activity, and whether this plays any part in controlling gene expression. Herein, it has been demonstrated that class IIa HDACs isolated from mammalian cells are contaminated with other deacetylases, but can be prepared cleanly in Escherichia coli. These bacteria preparations have weak but measurable deacetylase activity. The low efficiency can be restored either by: mutation of an active site histidine to tyrosine, or by the use of a non-acetylated lysine substrate, allowing the development of assays to identify class IIa HDAC inhibitors.  相似文献   

4.
Histone deacetylases (HDAC) are promising targets for cancer chemotherapy. HDAC inhibitors are thought to act in part by disrupting normal cell cycle regulation, resulting in apoptosis and/or differentiation of transformed cells. Several HDAC inhibitors, which contain hydrophobic tails and the Zn(2+) chelator hydroxyamic acid as a head group, are potent inhibitors of HDACs both in vitro and in vivo. In this study, a related class of compounds with a N-formyl hydroxylamino head group has been synthesized and their ability to inhibit HDACs have been assayed in biochemical and cellular assays. These compounds were found to have comparable activities to suberoylanilide hydroxyamic acid (SAHA) in HDAC enzymatic assays and histone hyperacetylation cellular assays.  相似文献   

5.
Inhibition of human histone deacetylases (HDACs) has emerged as a novel concept in the chemotherapeutic treatment of cancer. Two chemical entities, SAHA (ZOLINZA, Merck) and romidepsin (Istodax, Celgene) have been recently approved by the FDA as first-in-class drugs against cutaneous T-cell lymphoma. Clinical use of these drugs revealed several side effects including gastro-intestinal symptoms, fatigue, thrombocytopenia, thrombosis. Romidepsin is associated with an yet unresolved cardiotoxicity issue. A general hypothesis for the diminishment of unwanted adverse effects and an improved therapeutical window suggests the development of more isotype selective inhibitors. In this study the first time HDAC inhibitors with perfluorinated spacers between the zinc chelating moiety and the aromatic capping group were synthesized and tested against representatives of HDAC classes I, IIa and IIb. Competitive binding assays and a combined approach by using blind docking and molecular dynamics support binding of the perfluorinated analogs of SAHA to the active site of the HDAC-like amidohydrolase from Bordetella/Alcaligenes and presumably also to human HDACs. In contrast to the alkyl spacer of SAHA and derivatives, the perfluorinated alkyl spacer seems to contribute to or facilitate the induction of selectivity for class II, particularly class IIa, HDACs even though the overall potency of the perfluorinated SAHA analogs in this study against human HDACs remained still rather moderate in the micromolar range.  相似文献   

6.
Histone deacetylases (HDACs) have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E) in HDAC10 and leucine (L) in HDAC 11) based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M) mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E) mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.  相似文献   

7.
Histone deacetylase (HDAC) inhibitors are promising new epi‐drugs, but the presence of both class I and class II enzymes in HDAC complexes precludes a detailed elucidation of the individual HDAC functions. By using the class II‐specific HDAC inhibitor MC1568, we separated class I‐ and class II‐dependent effects and defined the roles of class II enzymes in muscle differentiation in cultured cells and in vivo. MC1568 arrests myogenesis by (i) decreasing myocyte enhancer factor 2D (MEF2D) expression, (ii) by stabilizing the HDAC4–HDAC3–MEF2D complex, and (iii) paradoxically, by inhibiting differentiation‐induced MEF2D acetylation. In vivo MC1568 shows an apparent tissue‐selective HDAC inhibition. In skeletal muscle and heart, MC1568 inhibits the activity of HDAC4 and HDAC5 without affecting HDAC3 activity, thereby leaving MEF2–HDAC complexes in a repressed state. Our results suggest that HDAC class II‐selective inhibitors might have a therapeutic potential for the treatment of muscle and heart diseases.  相似文献   

8.
9.
Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.  相似文献   

10.
11.
12.
Histone deacetylase (HDAC) inhibitors, including various benzamides and hydroxamates, are currently in clinical development for a broad range of human diseases, including cancer and neurodegenerative diseases. We recently reported the identification of a family of benzamide-type HDAC inhibitors that are relatively non-toxic compared with the hydroxamates. Members of this class of compounds have shown efficacy in cell-based and mouse models for the neurodegenerative diseases Friedreich ataxia and Huntington disease. Considerable differences in IC(50) values for the various HDAC enzymes have been reported for many of the HDAC inhibitors, leading to confusion as to the HDAC isotype specificities of these compounds. Here we show that a benzamide HDAC inhibitor, a pimelic diphenylamide (106), is a class I HDAC inhibitor, demonstrating no activity against class II HDACs. 106 is a slow, tight-binding inhibitor of HDACs 1, 2, and 3, although inhibition for these enzymes occurs through different mechanisms. Inhibitor 106 also has preference toward HDAC3 with K(i) of approximately 14 nm, 15 times lower than the K(i) for HDAC1. In comparison, the hydroxamate suberoylanilide hydroxamic acid does not discriminate between these enzymes and exhibits a fast-on/fast-off inhibitory mechanism. These observations may explain a paradox involving the relative activities of pimelic diphenylamides versus hydroxamates as gene activators.  相似文献   

13.
Histone deacetylase inhibitors (HDACIs) are a promising class of anticancer agents. To examine whether a slight change in the recognition domain could alter their inhibitory activity, we synthesized a series of cyclo(?l ‐Am7(S2Py)‐Aib‐l ‐Phe(n‐Me)‐d ‐Pro)derivatives and evaluated their HDAC inhibitory and anticancer activities. The peptides exhibited potent HDAC inhibitory activity and inhibited three human cancer cell lines with IC50 in the micromolar range. Docking and molecular dynamics simulation were conducted to explore the interaction mechanisms of class I and II HDACs with these inhibitors. It revealed that the zinc ion in the active site coordinated five atoms of HDACs and the sulfur atom of the inhibitor. The metal binding domains of these compounds interacted with HDAC2, and the surface recognition domains of these compounds interacted with HDAC4 through hydrogen bonding. The hydrophobic interactions also provided favorable contributions to stabilize the complexes. The results obtained from this study would be helpful for us to design some novel cyclic tetrapeptides that may act as potent HDACIs. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Trifluoroacetylthiophene carboxamides have recently been reported to be class II HDAC inhibitors, with moderate selectivity. Exploration of replacements for the carboxamide with bioisosteric pentatomic heteroaromatic like 1,3,4-oxadiazoles, 1,2,4-oxadiazoles and 1,3-thiazoles, led to the discovery that 2-trifluoroacetylthiophene 1,3,4-oxadiazole derivatives are very potent low nanomolar HDAC4 inhibitors, highly selective over class I HDACs (HDAC 1 and 3), and moderately stable in HCT116 cell culture.  相似文献   

15.
16.
17.
18.
19.
20.
Novel 2-aminoanilide histone deacetylase (HDAC) inhibitors were designed to increase their contact with surface residues surrounding the HDAC active site compared to the contacts made by existing clinical 2-aminoanilides such as SNDX-275, MGCD0103, and Chidamide. Their HDAC selectivity was assessed using p21 and klf2 reporter gene assays in HeLa and A204 cells, respectively, which provide a cell-based readout for the inhibition of HDACs associated either with the p21 or klf2 promoter. A subset of the designed compounds selectively induced p21 over klf2 relative to the clinical reference compound SNDX-275. A representative lead compound from this subset had antiproliferative effects in cancer cells associated with induction of acetylated histone H4, endogenous p21, cell cycle arrest, and apoptosis. The p21- versus klf2-selective compounds described herein may provide a chemical starting point for developing clinically-differentiated HDAC inhibitors for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号