首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
DNA sequences of polyoma virus early deletion mutants.   总被引:8,自引:16,他引:8       下载免费PDF全文
The DNA sequences of four "early" viable deletion mutants of polyoma virus have been determined. Two of these (dl-8 and dl-23) are mutants with deletions in the region of the genome that codes for parts of both large and middle T-antigens, and two (dl-6 and dl-28) are mutants with deletions around the viral origin of replication. The former mutants have altered transformation properties relative to wild-type virus, and dl-8 appears to be replication deficient (B. E. Griffin and C. Maddock, J. Virol. 31:645-656, 1979). Sequences are discussed in terms of the altered phenotypes observed for the various mutants, the DNA structures and protein sequences that are affected by the deletions, and how these might affect the biological properties of the mutants.  相似文献   

3.
We introduced deletions in the early region of the polyoma virus genome near the HaeII restriction enzyme cleavage site, between the origin of viral DNA replication and the site of initiation of translation of the polyoma T antigens. We analyzed the DNA of the deletion mutants by restriction enzyme digestion. Four of the mutants had deletions beginning very close to the HaeII site and extending clockwise toward the site of initiation of translation. The deletions near the HaeII site varied in size from about 10 base pairs to about 55 base pairs. The mutants containing deletions near the HaeII site were capable of lytic growth in mouse 3T6 cells and were capable of transforming rat F2408 cells, as judged by focus formation.  相似文献   

4.
Viable mutants of polyoma virus have been isolated which have deletions in defined parts of the early region of the genome. One class of mutants has deletions (less than 1% of viral genome length) located between 71.5 and 73.5 on the physical map of polyoma virus DNA, near the origin of replication. These mutants appear to grow and to transform cells in a manner indistinguishable from wild-type virus. A second type of mutant with deletions (about 2% of viral genome length) located between about 88 and 94.5 units on the physical map of polyoma virus DNA have altered transformation properties. One of the latter (which maps between 88 and 91.5 units) also has altered growth characteristics, whereas another (which maps between 91.5 and 94.5 units) resembles wild-type virus in its growth properties. The regions with deleted sequences have been defined by cleaving mutant DNAs with restriction endonucleases and analyzing pyrimidine tracts.  相似文献   

5.
Isolation of a multigene family containing human alpha-tubulin sequences   总被引:6,自引:0,他引:6  
The boundaries of the origin of polyoma DNA replication have been analyzed using a set of deletion mutants. The majority of these had small deletions, 5 to 30 base-pairs in size, which together removed most of the non-translated sequences of the genome. The phenotype of the mutants was characterized by analysis of infectivity, transforming ability and DNA synthesis. All mutants with reduced or abolished infectivity had corresponding defects of viral DNA synthesis. The effect of the deletion was cis-acting, since the replication of the mutants was not stimulated by the presence of wild-type DNA. Deletions causing a reduction of DNA synthesis were found at two sites. The first at the 32 base-pair inverted repeat sequence and the neighbouring A · T tract previously implicated in the initiation of DNA synthesis, and the second close to the late genes. The two sites were separated by at least 60 base-pairs of non-essential DNA. Only one mutant with a deletion at the second site was unable to express early gene functions.The mutants were constructed by linearization, shortening and recircularization of polyoma DNA inserted into the plasmid pBR322. The mutagenesis was directed at restriction endonuclease BglI or PvuII cleavage sites. The BglI-directed mutagenesis was focussed to polyoma DNA by using as a vector a derivative of pBR322 resistant to cleavage by BglI.  相似文献   

6.
An unusual non-defective mutant of polyoma virus with an anomalously large genome, designated din-21, has been isolated. The viral chromosome lacks 49 base pairs of the putative control region between the origin of replication and the initiation codon for the early proteins, the T-antigens. In their stead , 95 base pairs, with limited homology to the deleted sequence and apparently of mouse origin, have been inserted. The primary sequence of the insert DNA has been determined and some of the biological properties of the mutant examined. It transforms rat-1 cells slightly better than wild-type virus and grows slightly less well in lytically infected mouse cells. It does not interfere with the growth of wild-type polyoma virus. The properties of this mutant suggest that it is a natural isolate of mouse cells. The mutant was presumably generated by reciprocal recombination between polyoma DNA and mouse host DNA. This could be associated with the integration of a viral DNA sequence into the host chromosome during the viral replicative cycle.  相似文献   

7.
E Soeda  J R Arrand  N Smolar  B E Griffin 《Cell》1979,17(2):357-370
The sequence of about one third of the polyoma virus genome is presented. This sequence covers the origin of replication of two large plaque strains (A2 and A3) of polyoma virus. The two strains differ by 11 bp in the origin region. A model for replication is suggested. The sequence probably also covers the entire coding region of two of the polyoma virus early proteins--small and middle T antigens--as well as part of the coding region for large T antigen. Over a small region of the DNA, all three coding frames contain termination codons, which argues a need for spliced early messenger RNAs. In another region of the DNA, two coding frames can be used. Correlation with protein data suggests that one frame codes for part of middle T antigen and the other for part of large T antigen.  相似文献   

8.
Structure and function of the adenovirus origin of replication   总被引:30,自引:0,他引:30  
Efficient initiation of adenovirus DNA replication requires the presence of specific terminal nucleotide sequences that collectively constitute the viral origin of replication. Using plasmids with deletions or base substitutions in a cloned segment of DNA derived from the terminus of the adenovirus 2 genome, we have demonstrated that the origin contains two functionally distinct regions. The first 18 bp of the viral genome are sufficient to support a limited degree of initiation. However, the presence of a sequence in the region between nucleotides 19 and 67 greatly enhances the efficiency of the initiation reaction. This region contains a specific binding site for a protein present in uninfected cells (KD = 2 X 10(-11) M). The bound protein protects the DNA segment between base pairs 19 and 43 from attack by DNAase I. Studies with deletion mutants indicate that binding of the cellular protein is responsible for the enhancement of initiation.  相似文献   

9.
Construction and analysis of viable deletion mutants of polyoma virus.   总被引:31,自引:16,他引:15       下载免费PDF全文
Viable mutants of polyoma with small deletions ranging in size from 2 to 75 base pairs were obtained by infecting 3T3 cells with polyoma DNA that had been cleaved once with HaeII endonuclease or with DNase-Mn2+ digestion. The HaeII endonuclease-cleaved DNA yielded mutants with deletions at map position 72--73, whereas the mutants generated by DNase I-Mn2+ digestion had deletions either at map position 72--73 or within the map coordinates 92 and 99. Both groups of mutants appeared to grow as well as wild-type virus in 3T3 cells. The deletions at map position 72--73 did not alter the virus's ability to transform rat cells. Hence, the region just to the early side of the origin of DNA replication is not essential for vegetative growth or transformation. But the mutants with deletions in the region between map coordinates 92 and 99, a segment thought to code for polyoma large and middle T antigens (Hutchinson et al., Cell 15:65--77, 1978; Smart and Ito, Cell 15:1427--1437, 1978; Soeda et al., Cell 17:357--370, 1979), transformed rat cells at 0.2 to 0.05 the efficiency of wild-type virus.  相似文献   

10.
11.
The nucleotide sequence of the region of human polyoma virus JC DNA between 0.5 and 0.7 map units from a unique EcoRI cleavage site was determined and compared with those of the corresponding regions of another human polyoma virus, BK, and simian virus 40 DNAs. Within this region consisting of 945 base pairs, we located the origin of DNA replication near 0.7 map units, the entire coding region for small T antigen, and the splice junctions for large-T-antigen mRNA. The deduced amino acid sequences for small T antigen and the part of large T antigen markedly resembled those of polyoma virus BK and simian virus 40. The results strongly suggest that polyoma virus JC has the same organization of early genome as polyoma virus BK and simian virus 40 on the physical map, with the EcoRI site as a reference point.  相似文献   

12.
13.
Deletion mutants within the Py DNA region between the replication origin and the beginning of late protein coding sequences have been constructed and analysed for viability, early gene expression and viral DNA replication. Assay of replicative competence was facilitated by the use of Py transformed mouse cells (COP lines) which express functional large T-protein but contain no free viral DNA. Viable mutants defined three new nonessential regions of the genome. Certain deletions spanning the PvuII site at nt 5130 (67.4 mu) were unable to express early genes and had a cis-acting defect in DNA replication. Other mutants had intermediate phenotypes. Relevance of these results to eucaryotic "enhancer" elements is discussed.  相似文献   

14.
15.
Two mouse neuroblastoma cell lines were analyzed for their permissivity for polyoma virus growth. One (N18) is fully permissive for polyoma replication, the other (41A3) shows limited permissivity and the viral genome persists, without noticeable cell death. Virus persistence does not seem to alter the cells' ability to differentiate in vitro and leads to selection of viral mutants altered in the untranscribed regulatory region of the genome. The mutant types obtained appear to be related to the degree of host cell differentiation. Nucleotide sequence analysis of the restriction fragment covering the regulatory region shows that duplications are present in all mutants, while deletions in the non-duplicated segment are only present in mutants selected from less differentiated cells. These alterations involve both domains of the regulatory region that are considered to be essential for DNA replication and for enhancer activity. Mixed infections with polyoma wild type show that the selected mutants have cis-advantage in replication in neuroblastoma cells and not in 3T6 cells. Mutants carrying the deletion in the non-duplicated segment of the enhancer show a selective advantage in replication over the undeleted one in mixed infection. This advantage is much stronger in neuroblastoma cells in suspension (less-differentiated stage) than in monolayer cells (more-differentiated stage). An interpretation of the overall structure of the regulatory enhancer region, based on the observed differences between the mutants selected at different stages of differentiation in neuroblastoma and previously described mutants selected in undifferentiated cells, is discussed.  相似文献   

16.
17.
A recombinant DNA of 5,150 base pairs was prepared containing the intact early region of polyoma virus, including the viral origin of replication and the structural sequences of the herpes simplex virus type 1 thymidine kinase gene. Although no thymidine kinase activity was detected when herpes structural sequences alone were transfected into cells, activity was produced when the structural gene followed the polyoma early region. The recombinant DNA was encapsidated into polyoma virions when cotransfected into mouse 3T6 cells with helper DNA from an early polyoma virus mutant. Herpes thymidine kinase activity was detected by a rapid in situ autoradiographic assay in which [125]iododeoxycytidine was utilized as a substrate for the viral but not the cellular enzyme.  相似文献   

18.
The origin of bidirectional DNA replication in polyoma virus.   总被引:13,自引:0,他引:13       下载免费PDF全文
The nucleotide locations of RNA-p-DNA covalent linkages in polyoma virus (PyV) replicating DNA were mapped in the region containing the genetically required origin of DNA replication (ori). These linkages mark the initiation sites for RNA-primed DNA synthesis. A clear transition was identified between the presence of these linkages (discontinuous DNA synthesis) and their absence (continuous DNA synthesis) on each strand of ori. This demonstrated that PyV DNA replication, like simian virus 40 (SV40), is semi-discontinuous, and thus revealed the location of the origin of bidirectional DNA replication (OBR). The transition site on the template encoding PyV late mRNA occurred at the junction of ori-core and T-antigen binding site A. This was essentially the same site as previously observed in SV40 (Hay and DePamphilis, 1982). However, in contrast to SV40, the transition site on the template encoding PyV early mRNA was displaced towards the late gene side of ori. This resulted in a 16 nucleotide gap within ori in which no RNA-p-DNA linkages were observed on either strand. A model for the initiation of PyV DNA replication is presented.  相似文献   

19.
K Tanaka  K Chowdhury  K S Chang  M Israel    Y Ito 《The EMBO journal》1982,1(12):1521-1527
Mouse trophoblast cell lines established from cultured midterm placenta and a cell line obtained from cultured blastocyst resemble trophectoderm cells. These cells are resistant to infection by wild-type polyoma virus. We have isolated six polyoma virus mutants capable of growing in trophoblast cell lines. Restriction enzyme analyses and marker rescue experiments revealed that the genetic changes necessary for the growth of these mutants ( PyTr mutants) in trophoblast cells were located in a regulatory region of the genome between the origin of viral DNA replication and the region encoding the viral structural proteins. PyTr mutants are, therefore, similar to PyEC mutants, described by others, which are able to grow in embryonal carcinoma cell lines such as F9 or PCC4. The nucleotide sequence of two independently obtained PyTr mutants has an identical 26-bp deletion from nucleotide 5131 to 5156. This deleted region is replaced by either the sequence GGGA or by viral DNA sequences that flank this deletion. PyECF9 mutants grow well in trophoblast and trophectoderm cells, but PyTr mutants do not grow in F9 or PCC4 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号