首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cannabinoids exert a variety of physiological and pharmacological responses in humans through interaction with specific cannabinoid receptors. Cannabinoid receptors described to date belong to the seven-transmembrane-domain receptor superfamily and are coupled through the inhibitory G(i) protein to adenylyl cyclase inhibition. However, downstream signal transduction mechanisms triggered by cannabinoids are poorly understood. We examined here the involvement of the phosphoinositide 3-kinase (PI3K)/PKB pathway in the mechanism of action of cannabinoids in human prostate epithelial PC-3 cells. Cannabinoid receptors CB(1) and CB(2) are expressed in these cells, as shown by RT-PCR, Western blot and immunofluorescence techniques. Treatment of PC-3 cells with either Delta(9)-tetrahydrocannabinol (THC), the major psychoactive ingredient of marijuana, or R-(+)-methanandamide (MET), an analogue of the endogenous cannabinoid anandamide, increased phosphorylation of PKB in Thr308 and Ser473. The stimulation of PKB induced by cannabinoids was blocked by the two cannabinoid receptor antagonists, SR 141716 and SR 144528, and by the PI3K inhibitor LY 294002. These results indicate that activation of cannabinoid receptors in PC-3 cells stimulate the PI3K/PKB pathway. We further investigated the involvement of Raf-1/Erk activation in the mechanism of action of cannabinoid receptors. THC and MET induced translocation of Raf-1 to the membrane and phosphorylation of p44/42 Erk kinase, which was reversed by cannabinoid receptor antagonists and PI3K inhibitor. These results point to a sequential connection between cannabinoid receptors/PI3K/PKB pathway and Raf-1/Erk in prostate PC-3 cells. We also show that this pathway is involved in the mechanism of NGF induction exerted by cannabinoids in PC-3 cells.  相似文献   

2.
Cannabinoid receptors are found in moderate density throughout the cerebral cortex. The anterior cingulate cortex (ACC) is of particular interest due its high level of cannabinoid receptors and role in behaviors known to be modulated by cannabinoids. These studies were conducted to determine the cellular localization of cannabinoid receptors and to compare the level of cannabinoid receptor binding with receptor-mediated G-protein activity in the rat ACC. Either ibotenic acid or undercut lesions were made in ACC, and brains were processed for [3H]WIN 55,212-2 and WIN 55,212-2-stimulated [35S]GTPgammaS autoradiography. Both cannabinoid receptors and receptor-activated G-proteins were highest in laminae I and VI of ACC in control tissue. Although similar levels of receptor binding were found in these laminae, significantly higher levels of receptor-activated G-proteins were found in lamina VI. Ibotenic acid lesions that destroyed ACC neurons decreased [3H]WIN 55,212-2 binding by 60-70% and eliminated WIN 55,212-2-stimulated [35S]GTPgammaS binding. In contrast, deafferentation of the ACC with undercut lesions had no significant effect on cannabinoid receptor binding or G-protein activation. These results indicate that cannabinoid receptors in laminae I and VI of the ACC are located on somatodendritic elements or axons intrinsic to the ACC. In addition, differences in the relative levels of cannabinoid binding sites and activated G-proteins between cortical laminae indicate that the efficiency of cannabinoid receptors for G-protein activation may vary within a specific brain region.  相似文献   

3.

Background

The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis.

Methodology

Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons.

Principal Findings

CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue.

Conclusion

Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder.  相似文献   

4.
Synthesis and pharmacology of a hybrid cannabinoid   总被引:1,自引:0,他引:1  
A pentacyclic hybrid cannabinoid (4) has been synthesized, which combines structural elements of traditional cannabinoids and cannabmimetic indoles. Cannabinoid 4 contains a 1-pentylindole structure fused to the 2,3-positions of the partially reduced hydroxydibenzopyran system of THC. The successful approach to 4 employed 9-benzoyl-5,7-dimethoxy-1,2,3,4-tetrahydrocarbazole (17) as the starting material. Dehydrogenation to carbazole 18, followed by demethylation and condensation with trans-p-menthadienol gave N-benzoyl hybrid cannabinoid 22, N-alkylation of which afforded target cannabinoid 4. The hybrid cannabinoid had affinity for the CB1 receptor approximately equal to that of delta8-THC (Ki = 19.3+/-3 nM), and shows comparable potency in vivo.  相似文献   

5.
Two cannabinoid receptors, CB1 and CB2, are expressed in mammals, birds, reptiles, and fish. The presence of cannabinoid receptors in invertebrates has been controversial, due to conflicting evidence. We conducted a systematic review of the literature, using expanded search parameters. Evidence presented in the literature varied in validity, ranging from crude in vivo behavioural assays to robust in silico ortholog discovery. No research existed for several clades of invertebrates; we therefore tested for cannabinoid receptors in seven representative species, using tritiated ligand binding assays with [3H]CP55,940 displaced by the CB1-selective antagonist SR141716A. Specific binding of [3H]CP55,940 was found in neural membranes of Ciona intestinalis (Deuterstoma, a positive control), Lumbricusterrestris (Lophotrochozoa), and three ecdysozoans: Peripatoides novae-zealandiae (Onychophora), Jasus edwardi (Crustacea) and Panagrellus redivivus (Nematoda); the potency of displacement by SR141716A was comparable to measurements on rat cerebellum. No specific binding was observed in Actinothoe albocincta (Cnidaria) or Tethya aurantium (Porifera). The phylogenetic distribution of cannabinoid receptors may address taxonomic questions; previous studies suggested that the loss of CB1 was a synapomorphy shared by ecdysozoans. Our discovery of cannabinoid receptors in some nematodes, onychophorans, and crustaceans does not contradict the Ecdysozoa hypothesis, but gives it no support. We hypothesize that cannabinoid receptors evolved in the last common ancestor of bilaterians, with secondary loss occurring in insects and other clades. Conflicting data regarding Cnidarians precludes hypotheses regarding the last common ancestor of eumetazoans. No cannabinoid receptors are expressed in sponges, which probably diverged before the origin of the eumetazoan ancestor.  相似文献   

6.

Background

While cannabinoids have been shown to ameliorate liver fibrosis, their effects in chronic pancreatitis and on pancreatic stellate cells (PSC) are unknown.

Methodology/Principal Findings

The activity of the endocannabinoid system was evaluated in human chronic pancreatitis (CP) tissues. In vitro, effects of blockade and activation of cannabinoid receptors on pancreatic stellate cells were characterized. In CP, cannabinoid receptors were detected predominantly in areas with inflammatory changes, stellate cells and nerves. Levels of endocannabinoids were decreased compared with normal pancreas. Cannabinoid-receptor-1 antagonism effectuated a small PSC phenotype and a trend toward increased invasiveness. Activation of cannabinoid receptors, however, induced de-activation of PSC and dose-dependently inhibited growth and decreased IL-6 and MCP-1 secretion as well as fibronectin, collagen1 and alphaSMA levels. De-activation of PSC was partially reversible using a combination of cannabinoid-receptor-1 and -2 antagonists. Concomitantly, cannabinoid receptor activation specifically decreased invasiveness of PSC, MMP-2 secretion and led to changes in PSC phenotype accompanied by a reduction of intracellular stress fibres.

Conclusions/Significance

Augmentation of the endocannabinoid system via exogenously administered cannabinoid receptor agonists specifically induces a functionally and metabolically quiescent pancreatic stellate cell phenotype and may thus constitute an option to treat inflammation and fibrosis in chronic pancreatitis.  相似文献   

7.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

8.
We and others have recently demonstrated that the pharmacological tolerance observed after prolonged exposure to plant and synthetic cannabinoids in adult individuals seems to have a pharmacodynamic basis, based on the observed down-regulation of cannabinoid receptors in the brain of cannabinoid-tolerant rats. However, we were unable to elicit a similar receptor down-regulation after a chronic exposure to anandamide, the first discovered endogenous cannabinoid, possibly because of its rapid metabolic breakdown in arachidonic acid and ethanolamine. The present study was designed to progress in these previous studies, by using R-methanandamide, a more stable analog, instead anandamide. In addition, we examined not only cannabinoid receptor binding, but also WIN-55,212-2-stimulated [35S]-GTPγS binding, by autoradiography, and cannabinoid receptor mRNA levels, by in situ hybridization. Results were as follows. The daily administration of R-methanandamide for a period of five days produced decreases in cannabinoid receptor binding in the lateral caudate-putamen, cerebellum, entopeduncular nucleus and substantia nigra. The remaining areas, the medial caudate-putamen, globus pallidus, cerebral cortex (layers I and VI), hippocampus (dentate gyrus and Ammon’s horn) and several limbic structures (nucleus accumbens, septum nuclei and basolateral amygdaloid nucleus), exhibited no changes in cannabinoid receptor binding. Similarly, the levels of cannabinoid receptor mRNA expression decreased in the lateral and medial caudate-putamen and in the CA1 and CA2 subfields of the Ammon’s horn in the hippocampus after the chronic exposure to R-methanandamide, whereas the remaining areas showed no changes. WIN-55,212-2-stimulated [35S]-GTPγS binding did not change in the lateral caudate-putamen, cerebral cortex (layer I), septum nuclei and hippocampal structures (dentate gyrus and Ammon’s horn) of animals chronically exposed to R-methanandamide, whereas a certain trend to decrease could be observed in the substantia nigra and deep layer (VI) of the cerebral cortex in these animals. In summary, as reported for other cannabinoid receptor agonists, the prolonged exposure of rats to R-methanandamide, a more stable analog of anandamide, was able to produce cannabinoid receptor-related changes in contrast with the absence of changes observed early with the metabolically labile anandamide. The observed changes exhibited an evident regional pattern with areas, such as basal ganglia, cerebellum and hippocampus, responding to chronic R-methanandamide treatment while regions, such as the cerebral cortex and limbic nuclei, not responding.  相似文献   

9.
The aim of this study was to investigate the effects of the cannabinoid receptor agonist, WIN55212-2, and the cannabinoid receptor antagonist, SR141716A, on dopamine (DA) release evoked by KC1 (120 mM) microinjected into the striatum. The cannabinoid agonist WIN55212-2 (1 and 5 mg/kg, i.p.) dose-dependently attenuated DA release in the striatum, whereas the cannabinoid receptor antagonist SR141716A (3 mg/kg, i.p.) produced the opposite effect. SR141716A (3 mg/kg, i.p.) blocked the effects on DA release by WIN55212-2 (5 mg/kg, i.p.). Vehicle alone did not change DA release. These results suggest that cannabinoids modulate DA release in the striatum.  相似文献   

10.
Nicotine, the main psychoactive ingredient in tobacco, plays a key role in the development of cigarette smoking addiction. The endocannabinoid system has been demonstrated to have an important role in the motivational and reinforcing effects of drugs. The present study used behavioral and neurochemical techniques to study the interaction of cannabinoid receptors and nicotine pharmacology. In a locomotor activity experiment in rats, the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2 (0.28-2.8 mg/kg) attenuated nicotine (0.4 mg/kg)-induced hyperactivity, but did not alter nicotine (1.0 mg/kg)-induced hypoactivity. In contrast, the selective CB(1) cannabinoid receptor antagonist SR-141716A (1.0 mg/kg) diminished nicotine-induced hypoactivity, but did not alter nicotine-induced hyperactivity. In a neurochemical experiment, rat striatal slices preloaded with [(3)H]dopamine were superfused with WIN-55,212-2 or SR-141716A. A high concentration (100 microM) of WIN-55,212-2 evoked [(3)H]overflow, but this effect was not blocked by the cannabinoid receptor antagonist AM-251. SR-141716A did not evoke [(3)H]overflow, and neither WIN-55,212-2 nor SR-141716A altered nicotine-evoked [(3)H]overflow. Overall, these results indicate a behavioral interaction between cannabinoid receptors and nicotine pharmacology. Likely, WIN-55,212-2 and SR-141716A block nicotine-induced changes in behavior through an indirect mechanism, such as alteration in endocannabinoid regulation of motor circuits, rather than directly through blockade of nicotinic acetylcholine receptors.  相似文献   

11.
Shim JY  Welsh WJ  Howlett AC 《Biopolymers》2003,71(2):169-189
Association of cannabimimetic compounds such as cannabinoids, aminoalkylindoles (AAIs), and arachidonylethanolamide (anandamide) with the brain cannabinoid (CB(1)) receptor activates G-proteins and relays signals to regulate neuronal functions. A CB(1) receptor homology model was constructed using the published x-ray crystal structure of bovine rhodopsin (Palczewski et al., Science, 2000, Vol. 289, pp. 739-745) in the conformation most likely to represent the "high-affinity" state for agonist binding to G-protein coupled receptors (GPCRs). A molecular docking approach that combined Monte Carlo and molecular dynamics simulations was used to identify the putative binding conformations of nonclassical cannabinoid agonists, including AC-bicyclic CP47497 and CP55940, and ACD-tricyclic CP55244. Placement of these ligands was based upon the assumption of a critical hydrogen bond between the A-ring OH and the side chain N of Lys192 in transmembrane helix 3. We evaluated two alternative binding conformations, C3-in and C3-out, denoting the directionality of the ligand C3 side chain within the receptor with respect to the inside or the outside of the cell. Assuming both the C3-in or C3-out conformation, the calculated ligand-receptor binding energy (DeltaE(bind)) was correlated with the experimentally observed binding affinity (K(i)) for a series of nonclassical cannabinoid agonists. The C3-in conformation was marginally better than the alternative C3-out conformation in predicting the rank order of the tested nonclassical cannabinoid analogs. Adopting the C3-in conformation due to the greater number of receptor interactions with known pharmacophoric elements of the ligand, key residues were identified comprising the presumed hydrophobic pocket that interacts with the C3 side chain of cannabinoid agonists. Key hydrogen bonds would form between both K3.28(192) and E(258) and the A-ring OH, and between Q(261) and the C-ring C-12 hydroxypropyl. In summary, the present study represents one of the first attempts to construct a homology model of the CB(1) cannabinoid receptor based upon the published bovine rhodopsin x-ray crystal structure and to elucidate the putative ligand binding site for nonclassical cannabinoid agonists. We postulated sites of the CB(1) receptor critical for the ligand interaction, including the hydrophobic pocket interacting with the key pharmacophoric moiety, the C3 side chain. More work is needed to delineate between two alternative (and possibly other) binding conformations of the nonclassical cannabinoid ligands within the CB(1) receptor. The present study provides a consistent framework for further investigation of the CB(1) receptor-ligand interaction and for the study of CB(1) receptor activation.  相似文献   

12.
Investigation of cannabinoid pharmacology in a vertebrate with a phylogenetic history distinct from that of mammals may allow better understanding of the physiological significance of cannabinoid neurochemistry. Taricha granulosa, the roughskin newt, was used here to characterize an amphibian cannabinoid receptor. Behavioral experiments demonstrated that the cannabinoid agonist levonantradol inhibits both newt spontaneous locomotor activity and courtship clasping behavior. Inhibition of clasping was dose-dependent and potent (IC(50) = 1.2 microgram per animal). Radioligand binding studies using [(3)H]CP-55940 allowed identification of a specific binding site (K(D) = 6.5 nM, B(max) = 1,853 fmol/mg of protein) in brain membranes. Rank order of affinity of several ligands was consistent with that reported for mammalian species (K(D), nM) : CP-55940 (3.8) > levonantradol (13.0) > WIN55212-2 (25.7) > anandamide (1,665) approximately anandamide 100 microM phenylmethylsulfonyl fluoride (2,398). The cDNA encoding the newt CB1 cannabinoid receptor was cloned, and the corresponding mRNA of 5.9 kb was found to be highly expressed in brain. A nonclonal Chinese hamster ovary cell line stably expressing the newt CB1 cannabinoid receptor was prepared that allowed demonstration of cannabinoid-mediated inhibition of adenylate cyclase (EC 4.6.1.1) activity. This inhibition was dose-dependent and occurred at concentrations consistent with affinities determined through radioligand binding experiments. The behavioral, pharmacological, and molecular cloning results demonstrate that a CB1 cannabinoid receptor is expressed in the CNS of the roughskin newt. This amphibian CB1 is very similar in density, ligand binding affinity, ligand binding specificity, and amino acid sequence to mammalian CB1. The high degree of evolutionary conservation of cannabinoid signaling systems implies an important physiological role in vertebrate brain function.  相似文献   

13.
We designed and synthesized a series of pyrrole derivatives with the aim of investigating the structure-activity relationship (SAR) for the binding of non-classical agonists to CB(1) and CB(2) cannabinoid receptors. Superposition of two pyrrole-containing cannabinoid agonists, JWH-007 and JWH-161, allowed us to identify positions 1, 3 and 4 of the pyrrole nucleus as amenable to additional investigation. We prepared the 1-alkyl-2,5-dimethyl-3,4-substituted pyrroles 10a-e, 11a-d, 17, 21, 25 and the tetrahydroindole 15, and evaluated their ability to bind to and activate cannabinoid receptors. Noteworthy in this set of compounds are the 4-bromopyrrole 11a, which has an affinity for CB(1) and CB(2) receptors comparable to that of well-characterized heterocyclic cannabimimetics such as Win-55,212-2; the amide 25, which, although possessing a moderate affinity for cannabinoid receptors, demonstrates that the 3-naphthoyl group, commonly present in indole and pyrrole cannabimimetics, can be substituted by alternative moieties; and compounds 10d, 11d, showing CB(1) partial agonist properties.  相似文献   

14.
It has been recently shown that cannabinoids may regulate the growth of many cell types. In the present work we examined the effect of the anandamide analogue (R)-methanandamide (MET) on androgen-dependent prostate LNCaP cell growth. We found that 0.1 microM MET had a mitogenic effect measured by [(3)H]thymidine incorporation into DNA. The effect exerted by MET was blocked by the cannabinoid receptor antagonists SR141716 (SR1) and SR144528 (SR2) as well as by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, suggesting an involvement of cannabinoid receptors and the PI3K pathway in the mechanism of MET action. MET treatment of LNCaP cells also induced an up-regulation of androgen receptor expression that was blocked by the two cannabinoid receptor antagonists SR1 and SR2. These results show for the first time that cannabinoids may modify androgen receptor expression in an androgen-dependent cell line and by this mechanism could regulate prostate cell growth.  相似文献   

15.
Ligand-based virtual screening with a 3D pharmacophore led to the discovery of 30 novel, diverse and drug-like ligands of the human cannabinoid receptor 1 (hCB1). The pharmacophore was validated with a hit rate of 16%, binding selectivity versus hCB2, and expected functional profiles. The discovered compounds provide new tools for exploring cannabinoid pharmacology.  相似文献   

16.
SR141716A, a potent and selective antagonist of the brain cannabinoid receptor   总被引:30,自引:0,他引:30  
SR141716A is the first selective and orally active antagonist of the brain cannabinoid receptor. This compound displays nanomolar affinity for the central cannabinoid receptor but is not active on the peripheral cannabinoid receptor. In vitro, SR141716A antagonises the inhibitory effects of cannabinoid receptor agonists on both mouse vas deferens contractions and adenylyl cyclase activity in rat brain membranes. After intraperitoneal or oral administration SR141716A antagonises classical pharmacological and behavioural effects of cannabinoid receptor agonists. This compound should prove to be a powerful tool for investigating the in vivo functions of the anandamide/cannabinoid system.  相似文献   

17.
The anticonvulsant activities of cannabinoid compounds have been shown in various models of seizure and epilepsy. At least, part of antiseizure effects of cannabinoid compounds is mediated through calcium (Ca2+) channels. The L-type Ca2+ channels have been shown to be important in various epilepsy models. However, there is no data regarding the role of L-type Ca2+ channels in protective action of cannabinoids on acute and chronic models of seizure. In this study, the effects of cannabinoid compounds and L-type Ca2+ channels blockers, either alone or in combination were investigated using acute model of pentylenetetrazole (PTZ)-induced seizure in mice and chronic model electrical kindling of amygdala in rats. Pretreatment of mice with both cannabinoid CB1 receptor agonist arachidonyl-2′-chloroethylamide (ACEA) and endocannabinoid degradating enzyme inhibitor cyclohexylcarbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597) produced a protective effect against PTZ-induced seizure. Administration of various doses of the two L-type Ca2+ channel blockers verapamil and diltiazem did not alter PTZ-induced seizure threshold. However, co-administration of verapamil and either ACEA or URB597 attenuated the protective effect of cannabinoid compounds against PTZ-induced seizure. Also, pretreatment of mice with diltiazem blocked the anticonvulsant activity of both ACEA and URB597. Moreover, (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2), the non-selective cannabinoid CB1 and CB2 receptor agonist showed anticonvulsant effect in amygdala-kindled rats. However, co-administration of WIN55,212-2 and verapamil attenuated the protective properties of WIN55,212-2. Our results showed that the anticonvulsant activity of cannabinoid compounds is mediated, at least in part, by L-type Ca2+ channels in these two models of convulsion and epilepsy.  相似文献   

18.
Involvement of cannabinoid CB2 receptors in the IgE-mediated cutaneous reaction was investigated. Epicutaneous challenge with 2,4-dinitrofluorobenzene caused a triphasic swelling in the ear of BALB/c and C57BL/6 mice passively sensitized with anti-dinitrophenol IgE. Peak responses of the ear swelling appeared at 1 h, 24 h, and 8 days after the challenge in both strains of mice. In contrast, cannabinoid CB2 receptor-deficient mice failed to exhibit the obvious triphasic ear swelling observed in wild-type mice. Oral administration of cannabinoid CB2 receptor antagonist/inverse agonists [N-(benzo[1,3]dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydroquinoline-3-carboxamide] (JTE-907) and {N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)pyrazole-3-carboxamide} (SR144528) at doses of 0.1-10 mg/kg significantly and dose-dependently suppressed all three phases of ear swelling in BALB/c mice. Interestingly, epicutaneous treatment with an ether-linked analogue of endogenous cannabinoids, 2-arachidonoylglycerol, caused an ear swelling that could be detected at 1 h, 24 h, and 8 days after treatment of both BALB/c and C57BL/6 mice. These results suggest that cannabinoid CB2 receptors are involved in induction of the triphasic cutaneous reaction mediated by IgE, and that cannabinoid CB2 receptor antagonist/inverse agonists may serve as anti-allergic agents in the treatment of allergic dermatitis.  相似文献   

19.
Chronic treatment of rats with delta9-tetrahydrocannabinol (delta9-THC) results in tolerance to its acute behavioral effects. In a previous study, 21-day delta9-THC treatment in rats decreased cannabinoid activation of G proteins in brain, as measured by in vitro autoradiography of guanosine-5'-O-(3-[35S]thiotriphosphate) ([35S]GTPgammaS) binding. The present study investigated the time course of changes in cannabinoid-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding in both brain sections and membranes, following daily delta9-THC treatments for 3, 7, 14, and 21 days. Autoradiographic results showed time-dependent decreases in WIN 55212-2-stimulated [35S]GTPgammaS and [3H]WIN 55212-2 binding in cerebellum, hippocampus, caudate-putamen, and globus pallidus, with regional differences in the rate and magnitude of down-regulation and desensitization. Membrane binding assays in these regions showed qualitatively similar decreases in WIN 55212-2-stimulated [35S]GTPgammaS binding and cannabinoid receptor binding (using [3H]SR141716A), and demonstrated that decreases in ligand binding were due to decreases in maximal binding values, and not ligand affinities. These results demonstrated that chronic exposure to delta9-THC produced time-dependent and region-specific down-regulation and desensitization of brain cannabinoid receptors, which may represent underlying biochemical mechanisms of tolerance to cannabinoids.  相似文献   

20.
In silico modelling was used to guide the positioning of the fluorescent dye NBD-F on the cannabinoid CB2 receptor agonist JWH-015. While the ultimate fluorescent conjugate lost extensive binding affinity to the cannabinoid CB2 receptor, affinity and efficacy studies on the naphthoyl 3-position modified precursor molecules have provided new insight into structure-activity relationships associated with this position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号