首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two fatty acid binding proteins (FABPs) are expressed in adipose tissue, adipocyte lipid binding protein (ALBP) and keratinocyte lipid binding protein (KLBP). This study investigated FABP expression in visceral and subcutaneous human adipose tissue depots and associations with lipolytic differences between the depots and circulating insulin concentrations. ALBP and KLBP (protein and RNA) were quantified in subcutaneous and omental adipose tissue from obese individuals and expressed relative to actin. ALBP RNA and protein expression was significantly higher in subcutaneous compared to omental adipose tissue (both p < 0.05), whereas KLBP RNA and protein expression was no different between the two sites. There were significant inverse correlations between serum insulin concentrations and the ALBP/KLBP RNA ratio in both subcutaneous and omental adipose tissue (both p < 0.02). Basal rates of glycerol and fatty acid release measured in adipocytes isolated from subcutaneous and omental adipose tissue were significantly higher in the former (p 0.02). Therefore the relative ALBP/KLBP content of human adipose tissue is different in different adipose tissue depots and at the RNA level is related to the circulating insulin concentration, at least in obese subjects. The higher rates of basal lipolysis in adipocytes isolated from subcutaneous compared to omental adipose tissue might be related to the increased ALBP content of the former. Therefore adipose tissue FABPs are interesting candidates for investigation to further our understanding of the insulin resistance syndrome and regulation of lipolysis.  相似文献   

2.
The selective alpha1 -adrenoceptor antagonist doxazosin has apparently beneficial effects on insulin sensitivity and on plasma lipid concentrations. In order to understand these effects better, we investigated the acute effects of doxazosin on adipose tissue and forearm blood flow and on postprandial lipid metabolism in healthy subjects. Nine subjects were studied in a balanced, placebo-controlled design. Pulse rate, blood pressure, forearm and subcutaneous adipose tissue blood flow were measured before and for 6 h after a mixed meal, with concomitant measurements of blood metabolites and insulin. Doxazosin increased pulse rate (p = 0.02) and forearm blood flow (p < 0.01 in fasting state), and decreased vascular resistance in forearm (p < 0.05 for fasting values) and subcutaneous abdominal adipose tissue (p = 0.04). Fasting plasma non-esterified fatty acid concentrations were increased by 40 % (p < 0.05). No other metabolic effects were detected. The effects on adipose tissue vascular resistance and lipolysis (reflected in elevated non-esterified fatty acid concentrations) were unexpected, as these are usually considered to be mediated by the balance of alpha2 - and beta-adrenoceptor activity in humans. We conclude that alpha1 -adrenoceptor activity may be more important in regulation of human lipid metabolism than previously recognized.  相似文献   

3.
In the present study, the effect of endurance training alone and endurance training combined with recombinant human growth hormone (rhGH) administration on subcutaneous abdominal adipose tissue lipolysis was investigated. Sixteen healthy women [age 75 +/- 2 yr (mean +/- SE)] underwent a 12-wk endurance training program on a cycle ergometer. rhGH was administered in a randomized, double-blinded, placebo-controlled design in addition to the training program. Subcutaneous abdominal adipose tissue lipolysis was estimated by means of microdialysis combined with measurements of subcutaneous abdominal adipose tissue blood flow (ATBF; (133)Xe washout). Whole body fat oxidation was estimated simultaneously by indirect calorimetry. Before and after completion of the training program, measurements were performed both at rest and during 60 min of continuous cycling at a workload corresponding to 60% of pretraining peak oxygen uptake. Endurance training alone did not affect subcutaneous abdominal adipose tissue lipolysis either at rest or during exercise, as reflected by identical levels of interstitial adipose tissue glycerol, subcutaneous abdominal ATBF, and plasma nonesterified fatty acids before and after completion of the training program. Similarly, no effect on subcutaneous abdominal adipose tissue lipolysis was observed when combining endurance training with rhGH administration. However, in both the placebo and the GH groups, fat oxidation was significantly increased during exercise performed at the same absolute workload after completion of the training program. We conclude that the changed lipid metabolism during exercise observed after endurance training alone or after endurance training combined with rhGH administration is not due to alterations in subcutaneous abdominal adipose tissue metabolism in elderly women.  相似文献   

4.
Regional variation in adipose tissue lipolysis in lean and obese men.   总被引:7,自引:0,他引:7  
Biopsies of adipose tissue were obtained from two subcutaneous regions (abdominal and femoral) in a sample of 54 men (32 obese and 22 lean subjects). Clonidine-induced antilipolysis in femoral adipose cells was similar in both groups, whereas subcutaneous abdominal adipocytes of obese individuals showed a higher alpha 2-adrenergic response than did subcutaneous abdominal adipose cells from lean subjects. In addition, epinephrine had a biphasic effect in subcutaneous abdominal adipocytes from obese individuals, as it induced antilipolysis at low concentrations, and a net lipolytic response at higher doses. In contrast, the physiological amine promoted lipolysis in subcutaneous abdominal adipose cells of lean subjects. Epinephrine- and clonidine-induced antilipolysis of subcutaneous abdominal adipocytes was positively associated with the level of subcutaneous abdominal fat measured by computed tomography (CT). Finally, men with a high alpha 2-adrenergic response of subcutaneous abdominal fat cells were fatter than those with a low alpha 2-adrenergic component. These results suggest that, in men with a wide range of body fatness, variations in the lipolytic response of subcutaneous abdominal adipose cells to epinephrine appear to involve changes in the functional balance between alpha 2- and beta-adrenoceptors.  相似文献   

5.
Subcutaneous adipose tissue lipolysis was studied in vivo by Fick's arteriovenous (a-v) principle using either calculated (microdialysis) or directly measured (catheterization) adipose tissue venous glycerol concentration. We compared results during steady-state (rest and prolonged continuous exercise), as well as during non-steady-state (onset of exercise and early exercise) experimental settings. Fourteen healthy women [age: 74 +/- 1 (SE) yr] were studied at rest and during 60-min continuous bicycling at 60% of peak O(2) uptake. Calculated and measured subcutaneous abdominal adipose tissue venous glycerol concentrations increased substantially from rest to exercise but were similar both at rest and during later stages of exercise. In contrast, during the initial approximately 40 min of exercise, calculated glycerol concentration was significantly lower (approximately 40%) than measured adipose tissue venous glycerol concentration. Despite several methodological limitations inherent to both techniques, the results strongly suggest that microdialysis and catheterization provide similar estimates of subcutaneous adipose tissue lipolysis in steady-state experimental settings like rest and continuous prolonged exercise. However, during shorter periods of exercise (<40 min), the results from the two techniques may differ quantitatively in the studied subjects. Caution should, therefore, be taken when lipolysis is evaluated, based on results obtained by the two techniques under non-steady-state conditions.  相似文献   

6.
The present study was designed to measure interstitial levels of norepinephrine-regulating lipolysis (NE) in subcutaneous abdominal adipose tissue of anorexia nervosa (AN) patients and control subjects under basal conditions and after the local administration of an inhibitor of NE re-uptake, maprotiline. In vivo microdialysis technique was used to assess subcutaneous adipose NE levels in five women with AN (body mass index 14.62+/-0.47 kg/m(2)) and six age-matched controls (22.1+/-0.52 kg/m(2)). NE was assayed using high performance liquid chromatography with electrochemical detection after batch alumina extraction. Measured basal adipose tissue NE levels reflecting its interstitial levels were significantly increased in AN patients compared to the controls (106.0+/-20.9 vs. 40.0+/-5.0 pg/ml). The local maprotiline administration resulted in a significant increase in adipose tissue NE levels (AN patients: 440.0+/-28.6 vs. 202.0+/-33.0 pg/ml in the controls) in both groups. Markedly increased subcutaneous abdominal adipose tissue NE levels in AN patients compared to control subjects reflect increased sympathetic nervous system activity but not altered membrane noradrenergic transporter system in anorexia nervosa patients.  相似文献   

7.
To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p<0.05) in the primary study, of which 59 replicated in a follow-up study of 40 additional subjects. Further, 14 miRNAs were found to be associated with metabolic syndrome case-control status in abdominal tissue and three of these replicated (primary study: FDR adjusted p<0.05, replication: p<0.05 and directionally consistent effect). Genome-wide genotyping was performed in the 70 subjects to enable miRNA expression quantitative trait loci (eQTL) analysis. Candidate miRNA eQTLs were followed-up in the additional 40 subjects and six significant, independent cis-located miRNA eQTLs (primary study: p<0.001; replication: p<0.05 and directionally consistent effect) were identified. Finally, global mRNA expression profiling was performed in both tissues to enable association analysis between miRNA and target mRNA expression levels. We find 22% miRNAs in abdominal and 9% miRNAs in gluteal adipose tissue with expression levels significantly associated with the expression of corresponding target mRNAs (FDR adjusted p<0.05). Taken together, our results indicate a clear difference in the miRNA molecular phenotypic profile of abdominal and gluteal adipose tissue, that the expressions of some miRNAs are influenced by cis-located genetic variants and that miRNAs are associated with expression levels of their predicted mRNA targets.  相似文献   

8.
It has been shown that adipose tissue lipolytic activity is increased in endurance-trained subjects. In women, adipose tissue is extensive and it was thought interesting to confirm that endurance training increases the capacity of female adipose tissue to mobilize lipids, and moreover to more fully understand the mechanisms involved. So, biopsies of fat were obtained from the periumbilical region of 13 trained female runners (T) and 17 sedentary women (S) and the in vitro response to catecholamines of the collagenase-isolated fat cells was studied. Glycerol release, chosen as adipocyte lipolysis indicator, was measured by bioluminescence for various epinephrine and norepinephrine concentrations. In both groups, these substances provoked an increase in lipolysis, but the response was significantly higher in T. In both groups, isoproterenol increased the lipolytic activity above basal concentrations at 10(-8) M and above. Lipolytic activity in T was significantly higher (P less than 0.01) than the S control at 10(-7) M and above. Epinephrine plus propranolol decreased lipolysis in both groups, but at 10(-5) M, lipolytic activity was significantly lower in S than in T (P less than 0.05). It is concluded that in female subjects, endurance training increases the sensitivity of subcutaneous abdominal adipose tissue to the lipolytic action of catecholamines; this effect seems to be related both to a decreased efficiency of the alpha 2-adrenergic pathway and to an increased efficiency of the beta-adrenergic pathway. This latter effect seems to take place at a step beyond the receptor-adenylate cyclase system in the lipolytic cascade.  相似文献   

9.
Endurance training helps muscle tissue oxidize lipids and therefore helps conserve glycogen. It was thought interesting to find out if, in addition to this preferential use of fatty acids by muscle tissue, there is an increase in the capacity of adipose tissue to mobilize lipids. So the response to epinephrine of collagenase-isolated fat cells obtained after biopsies of fat performed in the periumbilical region of 10 trained marathon runners (T) and 10 sedentary subjects (S), all males, was studied in vitro. Glycerol release, chosen as adipocyte lipolysis indicator, was measured by bioluminescence. Lipolysis was studied with increased epinephrine concentration. This caused a significant increase in lipolysis only in the T subjects. The dose-response curves were significantly different for T and S subjects at 10(-6) M and above (P less than 0.05). To determine the modification mechanisms observed, lipolysis with isoproterenol and epinephrine plus propranolol were studied. Isoproterenol significantly increased lipolysis in both groups. The dose-response curves were significantly different at 10(-7) M (P less than 0.01) and above. In both groups, epinephrine plus propranolol significantly decreased lipolysis without distinction between T and S. It is concluded that in male subjects endurance training increases the sensitivity of subcutaneous abdominal adipose tissue to the lipolytic action of epinephrine; this effect seems to be related to an increased response of the beta-adrenergic pathways.  相似文献   

10.
11.
The aim of the present study was to investigate the influence of substrate availability on fuel selection during exercise. Eight endurance-trained male cyclists performed 90-min exercise at 70 % of their maximal oxygen uptake in a cross-over design, either in rested condition (CON) or the day after 2-h exercise practised at 70 % of maximal oxygen uptake (EX). Subjects were given a sucrose load (0.75 g kg?1 body weight) 45 min after the beginning of the 90-min exercise test. Lipolysis was measured in subcutaneous abdominal adipose tissue (SCAT) by microdialysis and substrate oxidation by indirect calorimetry. Lipid oxidation increased during exercise and tended to decrease during sucrose ingestion in both conditions. Lipid oxidation was higher during the whole experimental period in the EX group (p?=?0.004). Interestingly, fuel selection, assessed by the change in respiratory exchange ratio (RER), was increased in the EX session (p?=?0.002). This was paralleled by a higher rate of SCAT lipolysis reflected by dialysate glycerol, plasma glycerol, and fatty acids (FA) levels (p?<?0.001). Of note, we observed a significant relationship between whole-body fat oxidation and dialysate glycerol in both sessions (r 2?=?0.33, p?=?0.02). In conclusion, this study highlights the limiting role of lipolysis and plasma FA availability to whole-body fat oxidation during exercise in endurance-trained subjects. This study shows that adipose tissue lipolysis is a determinant of fuel selection during exercise in healthy subjects.  相似文献   

12.
The purpose of this investigation was to explore interactions between adrenergic stimulation, glucocorticoids, and insulin on the lipolytic rate in isolated human adipocytes from subcutaneous and omental fat depots, and to address possible sex differences. Fat biopsies were obtained from 48 nondiabetic subjects undergoing elective abdominal surgery. Lipolysis rate was measured as glycerol release from isolated cells and proteins involved in lipolysis regulation were assessed by immunoblots. Fasting blood samples were obtained and metabolic and inflammatory variables were analyzed. In women, the rate of 8-bromo-cAMP- and isoprenaline-stimulated lipolysis was approximately 2- and 1.5-fold higher, respectively, in subcutaneous compared to omental adipocytes, whereas there was no difference between the two depots in men. Dexamethasone treatment increased the ability of 8-bromo-cAMP to stimulate lipolysis in the subcutaneous depot in women, but had no consistent effects in fat cells from men. Protein kinase A, Perilipin A, and hormone sensitive lipase content in adipocytes was not affected by adipose depot, sex, or glucocorticoid treatment. In conclusion, catecholamine and glucocorticoid regulation of lipolysis in isolated human adipocytes differs between adipose tissue depots and also between sexes. These findings may be of relevance for the interaction between endogenous stress hormones and adipose tissue function in visceral adiposity and the metabolic syndrome.  相似文献   

13.
The objective of this work was to study the possible impact of DHEA-S on body fat distribution and the specific action of the hormone on lipolysis from visceral and subcutaneous human adipose tissue. First, a clinical evaluation was performed in 84 obese patients (29 men, 55 women), measuring serum DHEA-S, computed tomography (CT) anthropometric parameters of abdominal fat distribution. In a second experiment, subcutaneous and visceral adipose tissue samples were obtained from 20 obese patients (10 men, 10 women) and cultured in vitro under stimulation with DHEA-S to further assess a possible effect of this hormone on adipose tissue lipolysis. Serum DHEA-S was inversely and specifically associated with visceral fat area (VA) as assessed by CT in men and with waist-to-hip ratio in women. In vitro, DHEA-S increased lipolysis in women's subcutaneous adipose tissue at 2 h, while in men, the effect was evident in visceral tissue and after 24 h of treatment. In conclusion, DHEA-S contributes to gender-related differences in body fat distribution probably by a differential lipolytic action. We have demonstrated for the first time in vitro that DHEA-S stimulates lipolysis preferably in subcutaneous fat in women and in visceral fat in men.  相似文献   

14.
Lipolytic activity of human isolated fat cells from different fat deposits was studied. The purpose of the present investigations was to determine the epinephrine responsiveness, with regard to alpha- and beta-adrenergic receptor site activity, of omental and subcutaneous adipocytes (abdominal or from the lateral part of the thigh). Adipocytes were obtained from normal subjects or from obese subjects on iso- or hypocaloric diets. The lipolytic effect of epinephrine varied according to the fat deposits, while the beta-lipolytic effect of isoproterenol was more stable (Fig. 1). We explored the possible involvement of adrenergic alpha-receptors, in order to explain these results. The potentiating action of phentolamine on epinephrine-induced lipolysis, and the antilipolytic effect of alpha-agonists on basal or theophylline--induced lipolysis, were found to be a good indication of alpha-adrenergic activity. The alpha-adrenergic antilipolytic effect was most prominent in adipose tissue from the lateral part of the thigh, and less noticeable in omental adipocytes. In conclusion, the inability of epinephrine to induce lipolysis, and the epinephrine-induced inhibition of lipolysis observed when the basal rate of FFA release was spontaneously increased in subcutaneous fat-cells of the thigh, could be explained by an increased alpha adrenergic responsiveness (Fig. 2). Moreover, various alpha-adrenergic agonists (phenylephrine, noradrenaline and adrenaline) showed a clear inhibiting effect on theophylline-stimulated adipocytes from the thigh. The pharmacological study of the antilipolytic effect of epinephrine on theophylline-induced lipolysis showed that the inhibition was linked to a specific stimulation of the alpha-receptors of the subcutaneous adipocytes (Fig. 4). From the different sets of experiments, it is shown that the modifications in the lipolytic effect of epinephrine on adipocytes of different areas could be explained by the occurrence of a variable alpha-adrenergic effect initiated by catecholamine. Furthermore, theophylline stimulation of lipolysis provides an accurate system to investigate the alpha-inhibiting effect of catecholamines. Our study was completed by the investigation of the lipolytic activity of subcutaneous fat cells from obese subjects submitted to a hypocaloric diet (800-1 000 Cal/day). An increased alpha-inhibitory effect of epinephrine was shown on the increased basal lipolytic activity observed in the fat cells of obese subjects on a hypocaloric diet (Fig. 5); a similar effect was observed when these adipocytes were stimulated by theophylline. To conclude, these investigations allow the alpha-adrenergic effect to be considered as a regulator mechanism of the in vitro lipolytic activity in human adipose tissue, since the antilipolytic effect is operative whenever the basal rate of lipolysis is increased (spontaneously, after caloric restriction, or with a lipolytic agent such as theophylline).  相似文献   

15.
16.
We studied eight normal-weight male subjects to examine whether the lipolytic rate of deep subcutaneous and preperitoneal adipose tissues differs from that of superficial abdominal subcutaneous adipose tissue. The lipolytic rates in the superficial anterior and deep posterior subcutaneous abdominal adipose tissues and in the preperitoneal adipose tissue in the round ligament were measured by microdialysis and (133)Xe washout under basal, postabsorptive conditions and during intravenous epinephrine infusion (0.15 nmol. kg(-1). min(-1)). Both in the basal state and during epinephrine stimulation, the superficial subcutaneous adipose tissue had higher interstitial glycerol concentrations than the two other depots. Similarly, the calculated glycerol outputs from the superficial depot were significantly higher than those from the deep subcutaneous and the preperitoneal depots. Thus, it is concluded that the lipolytic rate of the superficial subcutaneous adipose tissue on the anterior abdominal wall is higher than that of the deep subcutaneous adipose tissue on the posterior abdominal wall and that of the preperitoneal adipose tissue in the round ligament.  相似文献   

17.
OBJECTIVE: The adipocyte-derived hormone leptin is involved in energy metabolism and body weight regulation. Plasma leptin concentrations are significantly reduced in patients with anorexia nervosa (AN) and with severe malnutrition. Whether reduced plasma leptin is reflected by its decreased production by the adipose tissue is unknown. METHODS: In the present study we measured leptin concentrations locally in the abdominal subcutaneous adipose tissue of 9 female AN patients and 11 healthy controls by in vivo microdialysis. RESULTS: Adipose tissue free leptin levels were not different in patients with AN compared to controls (2.59+/-1.99 vs 2.36+/-0.25 ng/ml, P>0.05). Plasma leptin soluble receptor (sOb-R) levels were significantly higher in patients with AN than in healthy subjects (58.05+/-38.69 vs 12.79+/-5.08 U/ml, P<0.01). The area of adipocyte in AN was considerably smaller than in the controls (183+/-104.01 microm2 compared to 2145.8+/-1003.41). CONCLUSIONS: We conclude that decreased plasma leptin levels in patients with AN are not directly related to dialysate leptin levels in the abdominal subcutaneous adipose tissue.  相似文献   

18.
The present investigation was directed to study the effect of in vitro or ex vivo NO donors, sodium nitroprusside and molsidomine, using isolated sliced adipose tissue or in the form of immobilized and perfused adipocytes on the basal and isoprenaline-stimulated lipolysis. The results demonstrated that 1) in vitro application of sodium nitroprusside to perfused adipocytes or molsidomine to sliced adipose tissues affects isoprenaline-induced lipolysis in two ways, an increase in lipolysis at low isoprenaline concentrations (which means the sensitization of adipose tissues to adrenergic effect by NO) and decreased adrenergic agonist-stimulated lipolysis at higher concentration of isoprenaline (a decrease in the maximum lipolytic effect of isoprenaline), 2) low concentrations of molsidomine alone induced lipolysis from adipose tissue which attained more than 60% of that by isoprenaline (pD2 value for molsidomine = 11.2, while pD2 for isoprenaline = 8.17) while sodium nitroprusside did not affect the basal lipolysis significantly, 3) in vivo administration of molsidomine for 2 days reduced the maximum lipolytic effect of isoprenaline and (only non-significantly) increased the sensitivity to low doses of isoprenaline. In conclusion the present data demonstrate that NO plays an important role in adrenergic lipolysis in adipose tissues and further investigations are needed to unravel the exact role of NO in lipolysis.  相似文献   

19.
Activation of lipolysis by cyclic AMP in conditions with accelerated lipid mobilization was examined in subcutaneous adipose tissue incubated in vitro. In (a) 16 obese patients before and during therapeutic starvation, (b) 18 diabetics before and after antidiabetic treatment and (c) 11 hyperthyroid patients before and after anti-thyroid treatment, a positive correlation was found between stimulation of basal cyclic AMP accumulation and stimulation of basal glycerol release using either isopropyl noradrenaline or noradrenaline (r = 0.6-0.9). During antidiabetic treatment stimulation of lipolysis increased in relation to that of cyclic AMP accumulation (F = 10.1, p less than 0.01), whereas during antithyroid therapy there was a decrease (F = 95.2, p less than 0.01). Starvation did not alter the relationship between lipolysis and cyclic AMP in hypogastric adipose tissue whereas in femoral tissue stimulation of lipolysis decreased in relation to that of cyclic AMP accumulation (F = 9.6, p less than 0.01). It is concluded that the amount of cyclic AMP needed to promote lipolysis is increased during starvation and in diabetes mellitus but is decreased in hyperthyroidism. From the studies during starvation it appears that regional differences in the post-receptor activation of lipolysis exist in human adipose tissue.  相似文献   

20.
Cortisol's effects on lipid metabolism are controversial and may involve stimulation of both lipolysis and lipogenesis. This study was undertaken to define the role of physiological hypercortisolemia on systemic and regional lipolysis in humans. We investigated seven healthy young male volunteers after an overnight fast on two occasions by means of microdialysis and palmitate turnover in a placebo-controlled manner with a pancreatic pituitary clamp involving inhibition with somatostatin and substitution of growth hormone, glucagon, and insulin at basal levels. Hydrocortisone infusion increased circulating concentrations of cortisol (888 +/- 12 vs. 245 +/- 7 nmol/l). Interstitial glycerol concentrations rose in parallel in abdominal (327 +/- 35 vs. 156 +/- 30 micromol/l; P = 0.05) and femoral (178 +/- 28 vs. 91 +/- 22 micromol/l; P = 0.02) adipose tissue. Systemic [(3)H]palmitate turnover increased (165 +/- 17 vs. 92 +/- 24 micromol/min; P = 0.01). Levels of insulin, glucagon, and growth hormone were comparable. In conclusion, the present study unmistakably shows that cortisol in physiological concentrations is a potent stimulus of lipolysis and that this effect prevails equally in both femoral and abdominal adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号