共查询到20条相似文献,搜索用时 15 毫秒
1.
Cleavage specificity of bacteriophage T4 endonuclease VII and bacteriophage T7 endonuclease I on synthetic branch migratable Holliday junctions 总被引:12,自引:0,他引:12
Holliday junctions are intermediate structures that are formed and resolved during the process of genetic recombination. To investigate the interaction of junction-resolving nucleases with synthetic Holliday junctions that contain homologous arm sequences, we constructed substrates in which the junction point was free to branch migrate through 26 base-pairs of homology. In the absence of divalent cations, we found that both phage T4 endonuclease VII and phage T7 endonuclease I bound the synthetic junctions to form specific protein-DNA complexes. Such complexes were not observed in the presence of Mg2+, since the Holliday junctions were resolved by the introduction of symmetrical cuts in strands of like polarity. The major sites of cleavage were identified and found to occur within the boundaries of homology. T4 endonuclease VII showed a cleavage preference for the 3' side of thymine bases, whereas T7 endonuclease I preferentially cut the DNA between two pyrimidine residues. However, cleavage was not observed at all the available sites, indicating that in addition to their structural requirements, the endonucleases show strong site preferences. 相似文献
2.
3.
Cleavage of single strand oligonucleotides and bacteriophage phi X174 DNA by Msp I endonuclease 总被引:4,自引:0,他引:4
Type II restriction endonucleases cleave duplex DNA at nucleotide sequences displaying 2-fold symmetry. Our data show that Msp I cleaves single strand oligonucleotides, d(G-A-A-C-C-G-G-A-G-A) and d(T-C-T-C-C-G-G-T-T) at 4 degrees, 25 degrees, and 37 degrees C reaction temperatures. The rate of cleavage of d(G-A-A-C-C-G-G-A-G-A) is several-fold faster than that of d(T-C-T-C-C-G-G-T-T). Single strand phi X174 DNA is also, cleaved by Msp I endonuclease giving well defined fragments. 5'-Nucleotide analysis of the fragments generated from single strand and replicating form DNA suggest that cleavage occurs at the recognition sequence d(C-C-G-G). The data show that Msp I endonuclease cleaves single strand oligonucleotides and prefers a recognition sequence surrounded by purine nucleotides. A general model for endonuclease cleavage of single strand and duplex DNA is presented. 相似文献
4.
Nested chromosomal fragmentation in yeast using the meganuclease I-Sce I: a new method for physical mapping of eukaryotic genomes. 总被引:3,自引:0,他引:3 下载免费PDF全文
We have developed a new method for the physical mapping of genomes and the rapid sorting of genomic libraries which is based on chromosome fragmentation by the meganuclease I-Sce I, the first available member of a new class of endonucleases with very long recognition sequences. I-Sce I allows complete cleavage at a single artificially inserted site in an entire genome. Sites can be inserted by homologous recombination using specific cassettes containing selectable markers or, at random, using transposons. This method has been applied to the physical mapping of chromosome XI (620 kb) of Saccharomyces cerevisi and to the sorting of a cosmid library. Our strategy has potential applications to various genome mapping projects. A set of transgenic yeast strains carrying the I-Sce I sites at various locations along a chromosome defines physical intervals against which new genes, DNA fragments or clones can be mapped directly by simple hybridizations. 相似文献
5.
T7 endonuclease I is a nuclease that is selective for the structure of the four-way DNA junction. The active site is similar to those of a number of restriction enzymes. We have solved the crystal structure of endonuclease I with a wild-type active site. Diffusion of manganese ions into the crystal revealed two peaks of electron density per active site, defining two metal ion-binding sites. Site 1 is fully occupied, and the manganese ion is coordinated by the carboxylate groups of Asp55 and Glu65, and the main chain carbonyl of Thr66. Site 2 is partially occupied, and the metal ion has a single protein ligand, the remaining carboxylate oxygen atom of Asp55. Isothermal titration calorimetry showed the sequential exothermic binding of two manganese ions in solution, with dissociation constants of 0.58 +/- 0.019 and 14 +/- 1.5 mM. These results are consistent with a two metal ion mechanism for the cleavage reaction, in which the hydrolytic water molecule is contained in the first coordination sphere of the site 1-bound metal ion. 相似文献
6.
Endonuclease I is a junction-resolving enzyme encoded by bacteriophage T7, that selectively binds and cleaves four-way DNA junctions. We have recently solved the structure of this dimeric enzyme at atomic resolution, and identified the probable catalytic residues. The putative active site comprises the side-chains of three acidic amino acids (Glu20, Asp55 and Glu65) together with a lysine residue (Lys67), and shares strong similarities with a number of type II restriction enzymes. However, it differs from a typical restriction enzyme as the proposed catalytic residues in both active sites are contributed by both polypeptides of the dimer. Mutagenesis experiments confirm the importance of all the proposed active site residues. We have carried out in vitro complementation experiments using heterodimers formed from mutants in different active site residues, showing that Glu20 is located on a different monomer from the remaining amino acid residues comprising the active site. These experiments confirm that the helix-exchanged architecture of the enzyme creates a mixed active site in solution. Such a composite active site structure should result in unilateral cleavage by the complemented heterodimer; this has been confirmed by the use of a cruciform substrate. Based upon analogy with closely similar restriction enzyme active sites and our mutagenesis experiments, we propose a two-metal ion mechanism for the hydrolytic cleavage of DNA junctions. 相似文献
7.
A single catalytic domain of the junction-resolving enzyme T7 endonuclease I is a non-specific nicking endonuclease 下载免费PDF全文
A stable heterodimeric protein containing a single correctly folded catalytic domain (SCD) of T7 endonuclease I was produced by means of a trans-splicing intein system. As predicted by a model presented earlier, purified SCD protein acts a non-specific nicking endonuclease on normal linear DNA. The SCD retains some ability to recognize and cleave a deviated DNA double-helix near a nick or a strand-crossing site. Thus, we infer that the non-specific and nicked-site cleavage activities observed for the native T7 endonuclease I (as distinct from the resolution activity) are due to uncoordinated actions of the catalytic domains. The positively charged C-terminus of T7 Endo I is essential for the enzymatic activity of SCD, as it is for the native enzyme. We propose that the preference of the native enzyme for the resolution reaction is achieved by cooperativity in the binding of its two catalytic domains when presented with two of the arms across a four-way junction or cruciform structure. 相似文献
8.
Specificity of binding to four-way junctions in DNA by bacteriophage T7 endonuclease I. 总被引:7,自引:2,他引:7 下载免费PDF全文
T7 endonuclease I binds specifically to four-way junctions in duplex DNA and promotes their resolution into linear duplexes. Under conditions in which the nuclease activity is blocked by the absence of divalent cations, the enzyme forms a distinct protein-DNA complex with the junction, as detected by gel retardation and filter binding assays. The formation of this complex is structure-specific and contrasts with the short-lived binding complexes formed on linear duplex DNA. The binding complex between T7 endonuclease I and a synthetic Holliday junction analog has been probed with hydroxyl radicals. The results indicate that the nuclease binds all four strands about the junction point. 相似文献
9.
10.
11.
Survey and mapping of restriction endonuclease cleavage sites in bacteriophage T7 DNA. 总被引:5,自引:0,他引:5
A survey of restriction endonucleases having different cleavage specificities has identified 10 that do not cut wild-type bacteriophage T7 DNA, 11 that cut at six or fewer sites, four that cut at 18 to 45 sites, and 12 that cut at more than 50 sites. All the cleavage sites for the 13 enzymes that cut at 26 or fewer sites have been mapped. Cleavage sites for each of the 10 enzymes that do not cut T7 DNA would be expected to occur an average of 9 to 10 times in a random nucleotide sequence the length of T7 DNA. A possible explanation for the lack of any cleavage sites for these enzymes might be that T7 encounters enzymes having these specificities in natural hosts, and that the sites have been eliminated from T7 DNA by natural selection. Five restriction endonucleases were found to cut within the terminal repetition of T7 DNA; one of these, KpnI, cuts at only three additional sites in the T7 DNA molecule. The length of the terminal repetition was estimated by two independent means to be approximately 155 to 160 base-pairs. 相似文献
12.
Folded, concatenated genomes as replication intermediates of bacteriophage T7 DNA. 总被引:12,自引:7,他引:5 下载免费PDF全文
A complex form of bacteriophage T7 DNA, containing up to several hundred phage equivalents of DNA, arises during replication of T7. The complex was stable to treatment with ionic detergent, Pronase, and phenol. The complex form normally exists for only a short time, corresponding to the phase of rapid T7 DNA synthesis. It is then converted to shorter molecules, both concatemers and unit-size DNA. The complex was stable up to the temperature of denaturation of the bihelix. It consisted of a series of loops amanating from a dense central core, as shownby electron microscopy. The complex form is similar to the relaxed Escherichia coli folded chromosome ('nucleoid'). The loops contained an average of 0.7 to 0.8 phage equivalent of DNA. During infection by phage with an amber mutation in gene 3 (endonuclease), formation of the complex occurred normally, but its maturation to unit-size DNA blocked. Before treatment with phenol, the complex contained short fragments of newly replicated DNA. These were released as single-stranded pieces during phenol treatment. A pathway for T7 DNA replication is indicated in which the flow of material is from unit-size DNA to linear concatemers to the complex form, and then back to unit-size DNA by way of linear concatemers. 相似文献
13.
The bacteriophage T3 and T7 RNA polymerases (RNAP) are closely related, yet exhibit high specificity for their own promoter sequences. In this work the primary determinant of T7 versus T3 promoter specificity has been localized to a single amino acid residue at position 748 in the T7 RNAP. Substitution of this residue (Asn) with the corresponding residue found in T3 RNAP (Asp) results in a switch in promoter specificity, and specifically alters recognition of the base pairs (bp) at positions -11 and, possibly, -10 in the promoter. A complementary mutation in T3 RNAP (T3-D749N) results in a similar switch in promoter preference for that enzyme. The hierarchy of bp preference by the mutant and wild-type enzymes for bp at -10 and -11, and the results of previous experiments, lead to a model for specificity in which it is proposed that N748 in T7 RNAP (and D749 in T3 RNAP) make specific hydrogen bonds with bases at -11 and -10 on the non-template strand in the major groove. The specificity determining region of T7 RNAP does not appear to exhibit homology to any known sequence-dependent DNA binding motif. 相似文献
14.
15.
Semiconservative DNA replication is initiated at a single site in recombination-deficient gene 32 mutants of bacteriophage T4. 总被引:8,自引:1,他引:8 下载免费PDF全文
We have investigated, by electron microscopy, replicative intermediate produced early after infection of Escherichia coli with two phage T4 gene 32 mutants (amA453 and tsG26) which replicate their parental DNA but are defective in secondary replications and in moderating the activities of recombination nucleases. Under conditions completely restrictive for progeny production, both of these mutant produced replicative intermediates, each containing a single internal loop. Both branches of these loops were double stranded; i.e., both leading and lagging strands were synthesized. The replicative intermediates of these mutants qualitatively and quantitatively resembled early replicating wild-type T4 chromosomes after solitary infection of E. coli. However, in contrast to intracellular wild-type T4 DNA isolated from multiple infection, the mutant DNAs showed neither multiple branches nor multiple tandem loops. These results demonstrate that a truncated gene 32 protein which consists of less than one-third of the wild-type T4 helix-destabilizing protein can facilitate the functions of T4 replication proteins, specifically those of T4 DNA polymerase and priming proteins. Our results also support the hypothesis that the generation of multiple tandem loops or branches in vegetative T4 DNA depends on recombination (Mosig et al., in B. Alberts, ed., Mechanistic Studies of DNA Replication and Genetic Recombination, p. 527-543, Academic Press, Inc., New York, 1980). 相似文献
16.
《Journal of Asia》2020,23(3):694-700
Recently, T7 Endonuclease I (T7E1) cleavage assay has been widely employed as an efficient approach for detecting mutations from CRISPR/Cas9 targeted samples. This enzyme is sufficient to detect single- and multiple-base mismatches from various heteroduplex DNA samples. However, T7E1 is quite expensive for researchers to use it only for screening mutations, especially in the condition of a large number of test samples. Regarding the production of this enzyme, to data, only the E. coli system has been reported and the highly overexpressed T7E1 seems toxic to the E. coli host cells. Thus, in this study, we tested whether the silkworm-baculovirus expression vector system (BEVS) is suitable to produce recombinant T7 Endonuclease I (rT7E1). The rT7E1 with N- or C-tags in cultured silkworm cells and silkworm pupae were successfully expressed. Our results demonstrated that the rT7E1-Ntag was highly expressed in silkworm pupae and we obtained rT7E1 proteins in high purity. Moreover, rT7E1 from silkworm-BEVS sufficiently recognized and cleaved the mismatches of designed and CRISPR/Cas9-mediated DNA substrates, which was equivalent to the commercial rT7E1 of the E. coli system. Taken together, our study would greatly support the genome-editing research by providing a cost-effective and active rT7E1 enzyme. 相似文献
17.
Mutation and polymorphism detection is of increasing importance in the field of molecular genetics. This is reflected by the
plethora of chemical, enzymatic, and physically based methods of mutation detection. The ideal method would detect mutations
in large fragments of DNA and position them to single base-pair (bp) accuracy. Few methods are able to quickly screen kilobase
lengths of DNA and position the mutation at the same time. The Enzyme Mismatch Cleavage (EMC) method of mutation detection
is able to reliably detect nearly 100% of mutations in DNA fragments as large as 2 kb and position them to within 6 bp. This
method exploits the activity of a resolvase enzyme from T4, T4 endonuclease VII, and more recently, a second bacteriophage
resolvase, T7 endonuclease I. The technique uses these enzymes to digest heteroduplex DNA formed by annealing wild-type and
mutant DNA. Digestion fragments indicate the presence, and the position, of any mutations. The method is robust and reliable
and much faster and cheaper than sequencing. These attributes have resulted in its increasing use in the field of mutation
detection. 相似文献
18.
Déclais AC Fogg JM Freeman AD Coste F Hadden JM Phillips SE Lilley DM 《The EMBO journal》2003,22(6):1398-1409
The junction-resolving enzyme endonuclease I is selective for the structure of the DNA four-way (Holliday) junction. The enzyme binds to a four-way junction in two possible orientations, with a 4:1 ratio, opening the DNA structure at the centre and changing the global structure into a 90 degrees cross of approximately coaxial helices. The nuclease cleaves the continuous strands of the junction in each orientation. Binding leads to pronounced regions of protection of the DNA against hydroxyl radical attack. Using all this information together with the known structure of the enzyme and the structure of the BglI-DNA complex, we have constructed a model of the complex of endonuclease I and a DNA junction. This shows how the enzyme is selective for the structure of a four-way junction, such that both continuous strands can be accommodated into the two active sites so that a productive resolution event is possible. 相似文献
19.
The site-specific cleavage of synthetic Holliday junction analogs and related branched DNA structures by bacteriophage T7 endonuclease I 总被引:18,自引:0,他引:18
Various branched DNA structures were created from synthetic, partly complementary oligonucleotides combined under annealing conditions. Appropriate mixtures of oligonucleotides generated three specific branched duplex DNA molecules: (i) a Holliday junction analog having a fixed (immobile) crossover bounded by four duplex DNA branches, (ii) a similar Holliday junction analog which is capable of limited branch migration and, (iii) a Y-junction, with three duplex branches and fixed branch point. Each of these novel structures was specifically cleaved by bacteriophage T7 gene 3 product, endonuclease I. The cleavage reaction "resolved" the two Holliday structure analogs into pairs of duplex DNA products half the size of the original molecules. The point of cleavage in the fixed-junction molecules was predominantly one nucleotide removed to the 5' side of the expected crossover position. Multiple cleavage positions were mapped on the Holliday junction with the mobile, or variable, branch point, to sites consistent with the unrestricted movement of the phosphodiester crossover within the region of limited dyad symmetry which characterizes this molecule. Based on the cleavage pattern observed with this latter substrate, the enzyme displayed a modest degree of sequence specificity, preferring a pyrimidine on the 3' side of the cleavage site. Branched molecules that were partial duplexes (lower order complexes which possessed single-stranded as well as duplex DNA branches) were also substrates for the enzyme. In these molecules, the cleaved phosphodiester bonds were in duplex regions only and predominantly one nucleotide to the 5' side of the branch point. The phosphodiester positions 5' of the branch point in single-stranded arms were not cleaved. Under identical reaction conditions, individually treated oligonucleotides were completely refractory. Thus, cleavage by T7 endonuclease I displays great structural specificity with an efficiency that can vary slightly according to the DNA sequence. 相似文献
20.
A fragment (GUUUCGUACAAAC) having a consensus sequence for the self-cleavage domain in a precursor of an RNA molecule from T4-infected Escherichia coli cells (p2Sp1; precursor of species 1) was chemically synthesized and found to be cleaved either between CA (139-140) or between UA (137-138) in the presence of monovalent cations and a non-ionic detergent. The cleaved products had 5'-hydroxyl and 3'-phosphate groups, of which some were in the form 2',3'-cyclic phosphates. 相似文献