首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cutinase gene from Fusarium solani f. sp. pisi (Nectria hematococa) was cloned and sequenced. Sau3A fragments of genomic DNA from the fungus were cloned in a lambda Charon 35 vector. When restriction fragments generated from the inserts were screened with 5' and 3' probes from cutinase cDNA, a 5.5-kilobase SstI fragment hybridized with both probes, suggesting the presence of the entire cutinase gene. A 2,818-base pair segment was sequenced, revealing a 690-nucleotide open reading frame that was identical to that found in the cutinase cDNA with a single 51-base pair intron. Transformation vectors were constructed containing a promoterless gene for hygromycin resistance, which was translationally fused to flanking sequences of the cutinase gene. When protoplasts and mycelia were transformed with these vectors, hygromycin-resistant transformants were obtained. Successful transformation was assessed by Southern blot analysis by using radiolabeled probes for the hygromycin resistance gene and the putative promoter. The results of Southern blot analysis indicated that the plasmid had integrated into the Fusarium genome and that the antibiotic resistance was a manifestation of the promoter activity of the cutinase flanking sequences. Transformation of Colletotrichum capsici with the same construct confirmed the promoter activity of the flanking region and the integration of the foreign DNA. Transformation and deletion analysis showed that promoter activity resided within the 360 nucleotides immediately 5' to the cutinase initiation codon.  相似文献   

2.
Gene targeting in mouse embryonic stem (ES) cells generally includes the analysis of numerous colonies to identify a few with mutations resulting from homologous recombination with a targeting vector. Thus, simple and efficient screening methods are needed to identify targeted clones. Optimal screening approaches require probes from outside of the region included in the targeting vector to avoid detection of the more common random insertions. However, the use of large genomic fragments in targeting vectors can limit the availability of cloned DNA, thus necessitating a strategy to obtain unique flanking sequences. We describe a rapid method to identify sequences adjacent to cloned DNA using long-range polymerase chain reaction (PCR) amplification from a genomic DNA library, followed by direct nucleotide sequencing of the amplified fragment. We have used this technique in two independent gene targeting experiments to obtain genomic DNA sequences flanking the mouse cholecystokinin (CCK) and gastrin genes. The sequences were then used to design primers to characterize ES cell lines with CCK or gastrin targeted gene mutations, employing a second long-range PCR approach. Our results show that these two long-range PCR methods are generally useful to rapidly and accurately characterize allele structures in ES cells  相似文献   

3.
We cloned a polyketide synthase gene (pks12) from Fusarium graminearum, a devastating fungal pathogen of cereals. Transformation-mediated gene disruption led to an easily detectable albino phenotype of the disruptants. We used the disruption of the pks12 gene as a visible marker for transformation-mediated homologous recombination and optimized the transformation procedure to achieve a high rate of homologous recombination. In combination with the published genomic sequence data and the generation of expressed sequence tags (ESTs) for F. graminearum, this is a useful tool to investigate this important plant pathogen on a molecular level. Optimized transformation of F. graminearum resulted in at least 93% homologous recombination events when the homologous genomic DNA fragment in the vector had a size of approximately 800bp and was linearized in the middle. Using a genomic sequence of approximately 500bp in the transformation vector, 70% of the transformants still exhibited homologous recombination. On the contrary, no more than 10% homologous recombination events were observed when less than 400bp DNA fragments were used. We co-transformed F. graminearum with two different vectors. One vector harboured a DNA insert homologous to the pks12 gene, while the other vector consisted of the same vector backbone carrying the selection marker specific for F. graminearum. About 70% of the transformants had a disrupted pks12 gene, and all of these showed an integration of the second vector into the pks disruption vector. Therefore, the time-consuming construction of a single transformation vector can be avoided; furthermore, it is now easily feasible to express a gene construct at a defined and mutated genomic site.  相似文献   

4.
An autosomal dominant mutation of facial development in a transgenic mouse   总被引:2,自引:0,他引:2  
We have created a transgenic mouse which showed an autosomal dominant mutation of facial development. This facial malformation was characterized by a short snout and a twisted upper jaw. All offspring showing the dysmorphic phenotype carried the injected gene. In order to analyze the primary cause of this mutation, newborn mice and embryos were examined. The outcome was that the malformation of nasal and premaxillary bone was not the primary defect but was a secondary event. The primary cause of this dysmorphism was a developmental defect in the first branchial arch. Genomic DNA fragments flanking the insertion site of this mutant mouse were cloned. Using these fragments, we have assigned the integration site to chromosome 13. The gene responsible for a previously reported mutant mouse, one which also has a short snout, is also reported to be on chromosome 13. In the fragments flanking the insertion site of the transgenic mouse, at least one fragment was highly conserved in mammals. These results indicate that this malformation is due to the insertional disruption of a host gene. However, the possibility that this mutation is caused by an inappropriate expression of the injected gene still remains to be investigated.  相似文献   

5.
6.
Waghmare SK  Caputo V  Radovic S  Bruschi CV 《BioTechniques》2003,34(5):1024-8, 1033
Sophisticated genome manipulation requires the possibility to modify any intergenic or intragenic DNA sequence at will, without leaving large amounts of undesired vector DNA at the site of alteration. To this end, a series of vectors was developed from a previous gene knockout plasmid system to integrate nonselectable foreign DNA at any desired genomic location in yeast, with a minimum amount of residual plasmid DNA. These vectors have two mutated Flp recognition targets (FRT) sequences flanking the KanMX4 gene and multiple sites for subcloning the DNA fragment to be integrated. The selectable marker can be recycled by Flp site-specific excision between the identical FRTs, thereby allowing the integration of further DNA fragments. With this system, the NLS-tetR-GFP and DsRed genes were successfully integrated at the thr1 locus, and the RVB1 gene was tagged at the C-terminus with the V5-epitope-6-histidine tag. This plasmid system provides for a new molecular tool to integrate any DNA fragment at any genome location in [cir+] yeast strains. Moreover, the system can be extrapolated to other eukaryotic cells in which the FLP/FRT system functions efficiently.  相似文献   

7.
The structure of the 3' one-third of the dystrophin gene has not previously been established. We have used vectorette PCR on a yeast artificial chromosome containing part of the human dystrophin gene to determine that there are 20 exons in this region and to characterize adjacent intron sequences of each one. Combined with previous information on the remainder of the gene, this study shows that the coding sequence is distributed between 79 exons. We have used PCR between exons to measure the distances that separate the more closely clustered exons. Vectorette PCR products were used as probes on Southern blots to assign all the 3' exons to genomic HindIII fragments that are commonly detected in the analysis of dystrophin gene deletions. The results will be useful for determining the effect of genomic deletions on the translational reading frame, for setting up genomic PCR assays to confirm point mutations, for analyzing splice site mutations, and for investigating potential cis-acting elements involved in tissue-specific alternative splicing. Vectorette PCR using primers derived from cDNA sequence represents an efficient and widely applicable method for establishing gene structure and obtaining intron sequence flanking exons, starting from a genomic clone and a cDNA sequence.  相似文献   

8.
水稻OsNCED3基因的RNAi载体构建   总被引:1,自引:0,他引:1  
冯光秀  陈惠 《生物学杂志》2012,29(1):47-50,58
水稻OsNCED3基因是水稻抗逆过程中重要的基因之一.以水稻中花10号幼苗为材料,提取基因组DNA.设计引物扩增区段cDNA并引入相应的酶切位点,以基因组DNA作为模板,进行RNAi-OsNCED3顺式和反式目的片段的PCR扩增.将PCR产物连接到pMD19-T载体上,经酶切和PCR检测后进行测序.测序结果表明:RNAi-OsNCED3顺式和反式目的片段均已正确的连接到pMD19-T载体上.然后将RNAi-OsNCED3顺式和反式目的片段通过酶切和连接,连接到含有发夹结构的质粒pFGC5941上.PCR及双酶切结果显示,构建的pFGC5941-OsNCED3即RNAi-OsNCED3载体结构完整.  相似文献   

9.
《Gene》1996,169(1):111-113
Cassettes based on a hisG-URA3-hisG insert have been modified by the addition of a KmR-encoding gene and flanking polylinker sites, greatly simplifying construction of gene disruption vectors in Escherichia coli. After gene disruption in yeast, URA3 can then be excised by recombination between the hisG repeats flanking the gene, permitting reuse of the URA3 marker  相似文献   

10.
Mobile group II introns have been used to develop a novel class of gene targeting vectors, targetrons, which employ base pairing for DNA target recognition and can thus be programmed to insert into any desired target DNA. Here, we have developed a targetron containing a retrotransposition-activated selectable marker (RAM), which enables one-step bacterial gene disruption at near 100% efficiency after selection. The targetron can be generated via PCR without cloning, and after intron integration, the marker gene can be excised by recombination between flanking Flp recombinase sites, enabling multiple sequential disruptions. We also show that a RAM-targetron with randomized target site recognition sequences yields single insertions throughout the Escherichia coli genome, creating a gene knockout library. Analysis of the randomly selected insertion sites provides further insight into group II intron target site recognition rules. It also suggests that a subset of retrohoming events may occur by using a primer generated during DNA replication, and reveals a previously unsuspected bias for group II intron insertion near the chromosome replication origin. This insertional bias likely reflects at least in part the higher copy number of origin proximal genes, but interaction with the replication machinery or other features of DNA structure or packaging may also contribute.  相似文献   

11.
12.
13.
The model bryophyte Physcomitrella patens exhibits high frequencies of gene targeting when transformed with DNA constructs containing sequences homologous with genomic loci. ‘Targeted gene replacement’ (TGR) resulting from homologous recombination (HR) between each end of a targeting construct and the targeted locus occurs when either single or multiple targeting vectors are delivered. In the latter instance simultaneous, multiple, independent integration of different transgenes occurs at the targeted loci. In both single gene and ‘batch’ transformations, DNA can also be found to undergo ‘targeted insertion’ (TI), integrating at one end of the targeted locus by HR with one flanking sequence of the vector accompanied by an apparent non-homologous end-joining (NHEJ) event at the other. Untargeted integration at nonhomologous sites also occurs, but at a lower frequency. Molecular analysis of TI at a single locus shows that this occurs as a consequence of concatenation of the transforming DNA, in planta, prior to integration, followed by HR between a single site in the genomic target and two of its repeated homologues in the concatenated vector. This reinforces the view that HR is the major pathway by which transforming DNA is integrated in Physcomitrella.  相似文献   

14.
15.
Gene transfer has been used to correct inherited immunodeficiencies, but in several patients integration of therapeutic retroviral vectors activated proto-oncogenes and caused leukemia. Here, we describe improved methods for characterizing integration site populations from gene transfer studies using DNA bar coding and pyrosequencing. We characterized 160 232 integration site sequences in 28 tissue samples from eight mice, where Rag1 or Artemis deficiencies were corrected by introducing the missing gene with gamma-retroviral or lentiviral vectors. The integration sites were characterized for their genomic distributions, including proximity to proto-oncogenes. Several mice harbored abnormal lymphoproliferations following therapy—in these cases, comparison of the location and frequency of isolation of integration sites across multiple tissues helped clarify the contribution of specific proviruses to the adverse events. We also took advantage of the large number of pyrosequencing reads to show that recovery of integration sites can be highly biased by the use of restriction enzyme cleavage of genomic DNA, which is a limitation in all widely used methods, but describe improved approaches that take advantage of the power of pyrosequencing to overcome this problem. The methods described here should allow integration site populations from human gene therapy to be deeply characterized with spatial and temporal resolution.  相似文献   

16.
EcoRI fragments containing integrated viral and adjacent host sequences were cloned from two polyoma virus-transformed cell lines (7axT and 7axB) which each contain a single insert of polyoma virus DNA. Cloned DNA fragments which contained a complete coding capacity for the polyoma virus middle and small T-antigens were capable of transforming rat cells in vitro. Analysis of the flanking sequences indicated that rat DNA had been reorganized or deleted at the sites of polyoma virus integration, but none of the hallmarks of retroviral integration, such as the duplication of host DNA, were apparent. There was no obvious similarity of DNA sequences in the four virus-host joins. In one case the virus-host junction sequence predicted the virus-host fusion protein which was detected in the transformed cell line. DNA homologous to the flanking sequences of three out of four of the joins was present in single copy in untransformed cells. One copy of the flanking host sequences existed in an unaltered form in the two transformed cell lines, indicating that a haploid copy of the viral transforming sequences is sufficient to maintain transformation. The flanking sequences from one cell line were further used as a probe to isolate a target site (unoccupied site) for polyoma virus integration from uninfected cellular DNA. The restriction map of this DNA was in agreement with that of the flanking sequences, but the sequence of the unoccupied site indicated that viral integration did not involve a simple recombination event between viral and cellular sequences. Instead, sequence rearrangements or alterations occurred immediately adjacent to the viral insert, possibly as a consequence of the integration of viral DNA.  相似文献   

17.
The dominant kanr marker gene plays an important role in gene disruption experiments in budding yeast, as this marker can be used in a variety of yeast strains lacking the conventional yeast markers. We have developed a loxP-kanMX-loxP gene disruption cassette, which combines the advantages of the heterologous kanr marker with those from the Cre-lox P recombination system. This disruption cassette integrates with high efficiency via homologous integration at the correct genomic locus (routinely 70%). Upon expression of the Cre recombinase the kanMX module is excised by an efficient recombination between the loxP sites, leaving behind a single loxP site at the chromosomal locus. This system allows repeated use of the kanr marker gene and will be of great advantage for the functional analysis of gene families.  相似文献   

18.
We report the genomic organization of the human CD2 gene and its expression in transgenic mice. A 28.5 kb segment of DNA consisting of 4.5 kb 5' flanking sequences, 15 kb containing the gene's five exons and 9 kb of 3' flanking sequences can direct the expression of the CD2 gene only on thymocytes, circulating T cells and megakaryocytes of the transgenic mice. The expression of each copy of the human CD2 transgene appears to be as high as the endogenous mouse CD2 gene and as high as the expression on the surface of human T lymphocytes, independent of the site of integration and dependent on the copy number of genes that have integrated.  相似文献   

19.
The frequency with which transforming DNA undergoes homologous recombination at a chromosomal site can be quite low in some fungal systems. In such cases, strategies for gene disruption or gene replacement must either select against ectopic integration events or provide easy screening to identify homologous site, double-crossover insertion events. A protocol is presented for efficient isolation of Neurospora crassa strains carrying a definitive null allele in a target gene. The protocol relies on the presence of a selectable marker flanking a disrupted plasmid-borne copy of the gene, and in the case presented led to a seven-fold enrichment for putative homologous site replacement events. In addition, a polymerase chain reaction assay is utilized for rapid identification of homologous recombinants among the remaining candidates. This protocol was used to identify 3 isolates, out of 129 primary transformants, which have a disruption in the Neurospora ccg-1 gene. The method should be applicable to a variety of fungal systems in which two selectable markers can be expressed, including those in which homologous recombination rates are too low to allow easy identification of homologous site insertions by the more traditional molecular method of Southern analysis. In addition to disrupting target genes for the purpose of generating null mutations, this method is useful for the targeting of reporter gene fusions to a native chromosomal site for the purpose of studying gene regulation.  相似文献   

20.
转基因水稻T—DNA侧翼序列的扩增与分析   总被引:19,自引:2,他引:17  
利用现有的转抗白叶枯病基因Xa21的水稻材料,通过TAIL-PCR技术扩增出携带Xa21基因的T-DNA的侧翼序列,对24个有效扩增片段的序列分析结果表明,其中14个侧翼序列是水稻DNA,9个含载体主干序列,1个是外源基因Xa21片段,14个T-DNA侧翼的水稻DNA序列与直接转化法外源基因整合位点的基因组序列具有不同的特点,这些T-DNA在水稻染色体上整合后其两端序列的特点类似于在转基因双子叶植物中观察到的现象,在含主干序列的侧翼序列(37.5%,9/24),中,载体主干序列是以不同的类型出现的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号